
Reducing Communication Costs in

Robust Peer-to-peer Networks

Jared Saia∗ Maxwell Young∗

Abstract

Several recent research results describe how to design Distributed Hash Tables (DHTs) that
are robust to adversarial attack via Byzantine faults. Unfortunately, all of these results require
a significant blowup in communication costs over standard DHTs. For example, to perform
a lookup operation, all such robust DHTs of which we are aware require sending O(log3

n)
messages while standard DHTs require sending only O(log n), where n is the number of nodes
in the network. In this paper, we describe protocols to reduce the communication costs of all
such robust DHTs. In particular, we give a protocol to reduce the number of messages sent
to perform a lookup operation from O(log3

n) to O(log2
n) in expectation. Moreover, we also

give a protocol for sending a large (i.e. containing Ω(log4
n) bits) message securely through a

robust DHT that requires, in expectation, only a constant blowup in the total number of bits
sent compared with performing the same operation in a standard DHT. This is an improvement
over the O(log2

n) bit blowup that is required to perform such an operation in all current robust
DHTs. Both of our protocols are robust against an adaptive adversary.

Keywords: algorithms; distributed computing; fault-tolerance; peer-to-peer; adaptive adver-
sary.

1 Introduction and Related Work

A distributed hash table (DHT) is a structured peer-to-peer (p2p) network which provides for
scalable and distributed storage and lookup of data items (see e.g. [11, 9, 12]). Because peer-to-peer
networks have little to no admission control, there has been significant effort in designing DHT’s
which are robust to Byzantine faults. When a peer suffers a Byzantine fault it is assumed to be
controlled by an adversary who uses that peer to try to disrupt the network. We refer to the peers
that suffer Byzantine faults as bad and the remaining peers as good.

Several recent results describe DHTs that are robust to adversarial attack via Byzantine
faults [3, 5, 7, 4, 1]. The current state of the art in this area is a recent, striking result due to
Awerbuch and Scheideler that describes a DHT that remains robust even if a number of join and
leave events by Byzantine peers is polynomial in the size of the network n [1]. All of these past
results make use of quorums, which are sets of Θ(log n) peers with the property that no more than
a fixed constant fraction of the peers in a quorum have suffered Byzantine faults.

While each of these results creates and maintains quorums in a different manner, the results
are similar in the way in which they use quorums to perform lookup operations. In particular,
assume that a peer p initiates the lookup operation and that there is a sequence of l quorums, Q1,
Q2, ..., Ql, that the lookup request must pass through. The request is first forwarded from p to
Q1. Next, for all i from 1 to l − 1, every peer in quorum Qi forwards the request to every peer in
Qi+1. Peers in Qi+1 accept only those messages that are received from a majority of peers in Qi.
Finally, the requested data item is retrieved by quorum Ql and the data item is sent back in the
same manner from Ql to Q1 and then to p. Provided that a majority of peers in each quorum are

∗Department of Computer Science, University of New Mexico, NM, USA; email: saia, young@cs.unm.edu. This

research was partially supported by NSF grant CCR-0313160 and Sandia University Research Program grant No.

191445.

1

not controlled by the adversary, this simple procedure ensures robust lookup operations. However,
this technique is not bandwidth efficient. In particular, if l = O(log n), as is common, then the
procedure requires O(log3 n) messages. Moreover, if a data item containing b bits is sent using this
procedure, then the total number of bits sent is O(bl · log2 n).

Our Contributions: In this paper, we give two algorithms for efficient communication through
quorums in a robust DHT. First, we give an algorithm to reduce the communication for lookups
from O(log3 n) messages to O(log2 n) in expectation. Second, we give an algorithm for sending a
large (i.e. containing Ω(log4 n) bits) message securely that requires, in expectation, only a constant
blowup in the total number of bits sent compared with performing the same operation in a standard
DHT. This is an improvement over the O(log2 n) bit blowup that is required to perform such an
operation in all previous quorum-based robust DHTs. Many first generation peer-to-peer systems
sent large data items directly from the peer holding the data item to the peer requesting the item.
However, increasingly in modern p2p systems such as BitTorrent, very large data items are being
sent through the network to provide both 1) better download times for the receiver of the data
item (due to increased bandwidth utilization); and 2) improved anonymity to the holder of the data
item. To the best of our knowledge, our algorithm is the first with guaranteed robustness against a
Byzantine adversary that will reduce bit blowup for modern p2p systems such as BitTorrent.

Each peer is assumed to have a unique ID (e.g. the IP address of the peer) and that peers in
neighboring quorums know each others IDs. For simplicity, we will frequently use the same variable
to refer both to the peer and to the ID of the peer. We will call peers controlled by the adversary
bad and will call the remaining peers good. For both results, we assume that strictly less than a 1/4
fraction of the peers in every quorum are bad. We also assume that each quorum is of size C1 lnn
where C1 is a positive constant1. A primary focus of all of the robust DHT results mentioned above
is to describe protocols to maintain these types of invariants for the quorums. Thus, in this paper,
we assume that these invariants are true and focus instead only on enabling efficient and secure
communication.

Given these invariants, our protocols ensure correctness, with high probability2, over a poly-
nomial number of peer join and leave events. Our first protocol is robust against a computationally
unbounded adversary, while our second protocol is robust only against a polynomial-time bounded
adversary. Our protocols are fully integrable with the p2p networks described in [1, 3, 5, 7, 4]. In
addition, our protocols can be used to create more efficient protocols, not just looking up data items,
but also for other p2p operations such as allowing a peer to join the network or maintaining link
structure.

Finally, we believe our protocols may be applicable to reducing communication costs in robust
radio networks. A common fault model for such networks is to assume that no more than a small,
constant fraction of the nodes in any neighborhood of a certain size suffer Byzantine faults [?, ?, ?, ?].
We believe we can treat each neighborhood of the radio network as a quorum and thereby reduce
the communication costs of current algorithms for communicating robustly in radio networks. Of
course, these new reduced-cost protocols will succeed only with high probability instead of with
probability 1.

A preliminary version of the results in this paper appeared in [4].

2 Expected Θ(log2
n) Messages

In this section, we show how to improve message passing between quorums so that only Θ(log n)
messages are sent in expectation from a quorum L to a quorum R. To avoid the problem of the bad
peers in L flooding the good peers in R, there must be some systematic way to match up each good
peer r ∈ R to those peers in L that should legitimately be sending to r. A naive approach for doing
this would be to order peers in L and R by distance from the start of the quorum and then match

1We note that it is easy to generalize our results to the case that not all quorums are of the same size, but rather

that each quorum is of size between C1 lnn and C2 ln n for fixed and known constants C1 and C2.
2We use the phrase with high probability throughout this paper to mean with probability 1− 1/nk for any desired

constant k > 0.

2

Algorithm 1: Sending from L to R

1: Each peer ℓ ∈ L sends a message to peer r ∈ R if h1(ℓ) = h2(r)

2: Each peer r ∈ R accepts a message from peer ℓ ∈ L if h1(ℓ) = h2(r)

3: Each peer r ∈ R, does majority filtering on all the messages accepted from peers in L to decide
on which message, if any, to commit.

up senders and receivers according to this ordering. Unfortunately, this approach fails since each
peer may have a slightly different view of the set of peers in L and R. In particular, if some peer x
does not know about even a single peer in L, then x’s ordering of the peers in L may be completely
incorrect.

To remedy this problem, we make use of two functions to match up senders and receivers. We
assume that the adversary has full knowledge of these functions before the protocol starts. Thus, the
naive approach of matching up senders in L and receivers in R according to the output of a single
function will fail. Instead, we match up senders and receivers via a more clever two-stage technique.
In particular, we assume all peers have functions h1 and h2 that map peers to the positive integers.
The function h1 maps a peer uniformly to an integer in the range 1 to lnn, while h2 maps a peer
to C2 integers selected uniformly and independently in the range 1 to lnn, for some constant C2 to
be specified later. For ease of presentation, we assume the existence of functions h1 and h2 for the
following analysis; we will show how such functions can be constructed in Section 4.

We first say that each peer ℓ ∈ L is assigned to a bin between 1 and lnn whose number is
given by h1(ℓ). The bad peers in L can choose the bin they are assigned to and thus the bad peers get
to make their bin selections after seeing the bins chosen by all the good peers. However, we can still
show that with high probability, at least a 6/10 fraction of the bins will be good in that they will
contain a majority of good peers. Next, each good peer r ∈ R is assigned to C2 bins using h2(r).
Finally, each peer ℓ ∈ L sends to every peer r ∈ R that is assigned to the same bin as ℓ. Then each
peer r ∈ R first does majority filtering over each bin it was assigned to in order to get a message
value for that bin. Next, r does majority filtering over the message values from each of the C2 bins
in order to decide on a single message value.

We then are able to show that no matter what set of (4/10) lnn of the bins are bad, that for
C2 chosen sufficiently large, almost all of the good peers in R will be assigned to a majority of good
bins and will thus decide on the correct message. To show this requires a somewhat subtle proof
that makes use of the probabilistic method since there are many possibilities for which bins may be
bad. Our algorithm for reducing message cost when sending from quorum L to quorum R, is given
in Algorithm 1. The proof of correctness of our lookup procedure is given as Theorem 1.

Lemma 1. The expected number of messages sent by good peers in Algorithm 1 is Θ(log n)

Proof. There are C1 lnn peers in R and each of them maps to C2 bins. Thus a bin chosen uniformly
at random will have C1C2 peers in R that map to it. Each good peer in L maps to a bin chosen
uniformly at random so the expected number of messages sent by any good peer is C1C2. By linearity
of expectation, the expected number of messages sent by all good peers is C1C2 log n = Θ(lnn).

Recall that we say that a bin is good if among the peers in L in that bin, a majority are good and
have the correct message. The next lemma lower-bounds the number of good bins.

Lemma 2. If at least 74/100 fraction of the peers in L good and have the correct message then for
C1 chosen sufficiently large, with high probability, at least a 6/10 fraction of the bins will be good.

Proof. We will say that a bin is full if it has at least (7/10)C1 good peers in it (and any number of
bad peers). We first show that for any ǫ > 0, we can choose C1 such that, with high probability,
all but ǫ logn bins will be full. To see this, let B′ be some set of ǫ log n bins and let N(B′) be the
number of good peers assigned to B′. Further let f = 74/100 be the fraction of good peers that
have the correct message. Note that the expected number of good peers assigned to B′ is exactly

3

fC1ǫ lnn. Further note that each good peer is assigned independently to B′. Thus, by Chernoff
bounds, we can say that for any 0 ≤ δ ≤ 1:

Pr(N(B′) ≤ (1 − δ)fǫC1ǫ lnn) ≤ e−(1/2)δ2fǫC1 ln n

We are particularly interested in the case where δ = 4/74 which ensures that (1 − δ)f = 7/10. Let
ξ be the event that any set of ǫ log n bins have less than (1− δ)fC1ǫ lnn good peers in them. Then
we can say that:

Pr(ξ) ≤

(

lnn

ǫ lnn

)

e−(1/2)δ2fǫC1 ln n

≤ e(1−(1/2)δ2fǫC1) ln n

For any k > 0, any δ > 0, any 0 < ǫ < 1 and C1 chosen greater than 2(1+k)
fǫδ2 this last probability will

be no more than n−k. Choosing, ǫ = 1/100 and δ = 4/74, we can say that w.h.p., no more than a
1/100 fraction of the bins have less than (7/10)C1 good peers in them.

We still must show that the adversary cannot place the bad peers in such a way as to take
over too many bins. To make a full bin bad, the adversary must place at least (7/10)C1 bad peers
in the bin. The adversary has (1/4)C1 lnn bad peers to place so it can take over no more than
(1/4)C1 ln n
(7/10)C1

= (5/14)C1 lnn of the full bins. Even assuming that the adversary also takes over all of

the bins that are not full, the number of bad bins will be no more than (5/14 + 1/100)C1 lnn <
(4/10)C1 lnn. Thus, the fraction of good bins will be at least 6/10.

Lemma 3. If at least a 6/10 fraction of the bins are good then for C2 chosen sufficiently large,
with high probability, at least (74/100)C1 lnn peers in R will be good and will commit to the correct
message.

Proof. We must show that the number of good peers in R that do not map to a majority of good bins
is no more than (1/100)C1 lnn. Consider some set R′ of good peers in R where |R′| = (1/100)C1 lnn.
Let N(R′) be the number of good bins that peers in R′ map to. Each peer in R′ maps to C2 bins
so E(N(R′)) ≥ C2(6/10)(1/100)C1 lnn. By Chernoff bounds, we can say that for any 0 ≤ δ ≤ 1:

Pr(N(R′) ≤ (1 − δ)E(N(R′))) ≤ e−δ2C2(3/1000)C1 lnn

We are particularly interested in the case where δ = 1/6 which ensures that (1 − δ)(6/10) = 1/2.
Let ξ be the event that any set of (1/100) logn good peers in R all do not map to a majority of
good bins.Then we can say that:

Pr(ξ) ≤

(

C1 lnn

(1/100)C1 lnn

)

e−δ2C2(3/1000)C1 ln n

≤ e(1−δ2C2(3/1000))C1 ln n

Choosing C2 > 1000
3δ2 ensures that the lemma holds with high probability.

The following corollary is immediate from Lemmas 2 and 3.

Corollary 1. For C1 and C2 chosen sufficiently large, with high probability, if at least a 74/100
fraction of the peers in L are good and have the correct message then at the end of Algorithm 1, at
least a 74/100 fraction of the peers in R will be good and have the correct message.

Let lookup denote a lookup protocol consisting of communication through a sequence of O(log n)
quorums.

Theorem 1. For C1, C2 sufficiently large but depending only on k, the following is true with prob-
ability at least 1 − 1/nk:

• All calls to lookup succeed.

4

(A)

j−1

Q j ..
. ..

...
.

h1 h2

L R
Bins

(B)

Q

Figure 1: (A) Two quorums Qj−1 and Qj on the unit circle in a DHT. The bidirectional dashed
arrow implies that all peers in Qj−1 know the IDs of all peers in Qj and vice-versa. (B) In the
context of Algorithm 1, the quorums L and R are depicted. Each peer ℓ ∈ L is mapped to a single
bin via h1 and each peer r ∈ R is mapped to C2 bins via h2 where in this simple depiction C2 = 2.

• All calls to lookup send Θ(log2 n) messages in expectation.

Proof. Consider some arbitrary call to the lookup protocol described by the sequence: p, Q1, Q2,
Q3, . . . , Ql where p belongs to Q1 and m is the request sent. Here p sends the message m to quorum
Q1, Q1 sends the request to Q2 via Algorithm 1, Q2 sends the request to Q3 via Algorithm 1 and
so on. For a quorum Q, let G(Q) be the set of good peers in Q that commit to m after majority
filtering.

By a Union bound and repeated applications of Corollary 1, we can say that w.h.p., for any
Qi, G(Qi) ≥ 74/100C1 lnn. Thus (74/100)|Ql| good peers in Qℓ receive the request m and fetch the
appropriate data item, d. A similar argument from Qℓ, Qℓ−1 and all the way back to Q1 shows that
p will receive the correct data item d after majority filtering on messages received from Q1. Finally,
note that since l = O(log n), by Lemma 2, the expected number of messages sent is Θ(log2 n).

3 Expected Θ(1) Bit Blowup

In this section we assume that peer p is trying to transmit a message m along the path p, Q1, Q2,
Q3, . . . , Ql where Qi, i = 1, . . . , l are quorums and p belongs to Q1. We assume that the adversary
is polynomially bounded. Let |m| be the number of bits in the message m. Peer p first encodes m
into log n pieces e1, e1, . . . , eln with the following properties: 1) each piece has O(|m|/ log n) bits and
2) m can be reconstructed from any 1/16-th fraction of the pieces. Any standard erasure code, such
as tornado codes [6], can be used to create pieces with these two properties.

Peer p next creates fingerprints f1, f2, . . . , flnn of all these pieces using a 1-way hash function,
hf known by all the peers. For all i = 1, . . . , lnn, fi = hf (ei). Each of fingerprint has log2 n
bits. This ensures that the probability that a random string maps to a fixed fingerprint is 1/nlnn;
therefore, the adversary requires superpolynomial time to find a string which maps to one of the
fingerprints. We also make use of the function h1 from the previous section that maps peers to
integers in the range 1 to lnn.

Peer p sends all of the fingerprints to all of the peers in Q1. Then for all j = 2, . . . , l, all peers
in Qj−1 send all of the fingerprints to all the peers in Qj and peers in Qj accept a fingerprint if
and only if it was received from a majority of peers in Qj−1. This guarantees that all peers in the
quorums Q1, Q2, . . . , Ql know all of the fingerprints. We will thus assume, in the protocol, described
in this section, that a peer accepts a string s as some piece ej if and only if hf (s) = fj .

The first step of our protocol is simple. Peer p sends piece ei to peer x ∈ Q1 iff h1(x) = i. The
general protocol where Qj−1 sends to Qj for all j = 2, . . . , l is given as Algorithm 2. This protocol

5

Algorithm 2: Sending from Qj−1 to Qj

1: Each peer in Qj−1 sends the fingerprints of the message m, f1, f2, . . . , fln n, to each peer in Qj .
2: The peers accept only those fingerprints that they receive from a majority of the peers in Qj−1.

In the remainder of the algorithm, a peer in Qj only accepts a string s as some piece ej if
hf (s) = fj .

3: while TRUE do

4: Peers in Qj−1 come to consensus on a random integer r in {1, . . . lnn}.
5: Let P = {x ∈ Qj|h1(x) = r}. All peers in Qj−1 send all of the pieces they currently hold to

all peers in the set P .
6: All peers in P reconstruct the message m from the pieces received. From the message m, they

then recompute the pieces e1, e1, . . . , elnn.
7: For each i = 1, . . . , lnn, all peers in P send piece ei to all peers x ∈ Qj such that h1(x) = i.
8: The peers in Qj come to consensus about whether they want a resend as follows:

1. Each peer x ∈ Qj does the following. If h1(x) = i and x received piece ei, x writes all
peers in Qj that it received its piece.

2. Every peer x ∈ Qj does the following. If x received messages indicating that at least
(3/4)|Qj| peers received their pieces, it tentatively sets an individual “resend” bit to 0
otherwise it sets this bit to 1.

3. All peers in Qj do Byzantine agreement to come to consensus on the “resend” bit values
set in the previous step.

9: The peers in Qj send to the peers in Qj−1 the results of this consensus i.e. either that they
want a resend or that they do not want a resend.

10: If the peers in Qj−1 receive responses from more than 1/4 of the peers in Qj that they do not
want a resend, the algorithm terminates.

makes use of a Byzantine agreement protocol and the protocol for coming to consensus on a random
number. For the latter, we employ the scheme proposed in [1]. The basic idea of the remaining steps
of the protocol i.e. sending from Qj−1 to Qj is as follows. The peers in Qj−1 agree on a randomly
selected leader in Qj to whom they will send all their pieces. This leader, if good, will reconstruct
the message m; reconstruct the pieces of m; and then send out the appropriate piece to each peer
in Qj . Each peer in Qj checks the piece they received against the fingerprint for that piece. The
peers in Qj then run an agreement procedure to determine if enough of them received the correct
piece. If so, the step ends. If not, this information is sent back to Qj−1 and a new random leader is
selected. For any quorum Q, we will now let G(Q) = {x ∈ Q| h1(x) = i and x is good and has piece
ei}.

Lemma 4. For any fixed k, for C sufficiently large but depending only on k, the following is true
with probability at least 1 − 1/nk. For all quorums Q, if |G(Q)| ≥ |Q|/2 and all peers in Q send
their pieces to some peer x, then x will be able to reconstruct the message m.

Proof. We first fix a quorum Q and calculate the probability that the statement of the lemma is not
true. For any set of good peers, X , let U(X) = {i|h1(x) = i, for some peer x ∈ X}. Let Q′ be some
fixed subset of good peers in Q such that |Q′| ≥ |Q|/2 and all peers in Q′ have their correct pieces.
Let P ′ be some fixed subset of the set of ln n pieces, such that |P ′| > (15/16) lnn. Let ξ(Q′, P ′) be
the probability that no peer in Q′ has a piece in P ′. This is equivalent to a balls and bins problem
where there are |Q′| balls and lnn bins and we are asking the probability that none of the |Q′| balls
fall in a fixed set of |P ′| of the bins. Thus:

Pr(ξ(Q′, P ′)) ≤ (1/16)|Q
′| ≤ (1/2)2|Q|

6

Now let ξ(Q) be the event that for any subsets Q′ and P ′, the event ξ(Q′, P ′) occurs. Then we have:

Pr(ξ(Q)) = Pr(
⋃

Q′,P ′

ξ(Q′, P ′)) ≤
∑

Q′,P ′

Pr(ξ(Q′, P ′)) =

(

|Q|

|Q|/2

)(

lnn

(15/16) lnn

)

(1/2)2|Q|

≤ 2|Q|2lnn((1/2)2|Q|) ≤ (1/2)|Q|−lnn ≤ 1/nC−1.

Where the last inequality follows since |Q| ≥ C1 lnn. A simple union bound over all n of the swarms
gives that the probability that the statement in the lemma fails for any quorum is no more than
1/nC−2. Choosing C sufficiently large makes this probability no more than 1/nk for any k.

We will refer to one iteration of the loop in Algorithm 2 as a round.

Lemma 5. For any fixed k, for C sufficiently large but depending only on k, the following is true
with probability at least 1−1/nk for all pairs of quorums, Qj−1 and Qj. If |G(Qj−1)| ≥ (1/2)|Qj−1|
before Algorithm 2 starts, then |G(Qj−1)| ≥ (1/2)|Qj| after termination. Further, if all peers in
Qj−1 know all of the fingerprints before Algorithm 2 starts, then all peers in Qj will know all the
fingerprints after termination. Algorithm 2 will:

• Terminate in O(1) rounds in expectation;

• Require good peers to send O(log3 n) messages in expectation;

• Require good peers to send O(|m| + log4 n) bits to be sent in expectation.

Proof. Since quorum Qj−1 is good and the peers in Qj do majority filtering in Step 2, we know that
if all peers in Qj−1 know all of the fingerprints before Algorithm 2 starts, then all peers in Qj will
know all the fingerprints after termination.

If |G(Qj−1)| ≥ (1/2)|Qj−1|, then by Lemma 4, all peers in the set P which are sent the
message pieces in Step 5 will be able to reconstruct the message m. Since 3/4 of the peers in Qj are
good, the probability that no peer in P is good is no more than (1 − 1/ lnn)(3/4)C1 ln n ≤ e−(3/4)C1 .
Thus with constant probability, some peer in the set P is good. If this is the case, then all peers
in Qj will receive their correct piece of the message. This implies that the algorithm will terminate
in that round with |G(Qj)| ≥ 1/2|Qj|. This implies that Algorithm 2 will terminate in an expected
constant number of rounds.

We next establish correctness. Consider the situation where no peer in P is good. There are
then two possible cases. First is the case less than (1/2)|Qj| peers in Qj are sent their pieces in Step
5. In this case, no peer in Step 8.2 will receive at least (3/4)|Qj| messages saying that pieces were
received. Thus all good peers will set their resend bits to 1 in this step and so the consensus will be
to request a resend. This implies that the algorithm will continue for another round. The second
case is that faulty peers in P send pieces to at least (1/2)|Qj| peers in Qj . If this is the case, then
it’s safe for the algorithm to terminate.

We now compute the resource costs. Previous to the first round, the fingerprints are sent
which requires O(log2 n) messages, and O(log4 n) bits. The expected size of the set P is O(1). We
employ techniques from secure multiparty computation in order to have quorums select a random
value in [0, 1). There are several results showing how to achieve secure multiparty computation in an
asynchronous network provided that the fraction of Byzantine players is strictly less than 1/4 (see
[2, 10, 8]). Srinathan and Rangan [10] give the most resource efficient secure multiparty computation
protocol of which we are aware for this problem. In the case where there are Θ(log n) peers, strictly
less than 1/4 of which are faulty, we can compute a random number using Θ(log3 n) messages, with
Θ(log n) latency using their protocol. This protocol can be used to complete Step 3 in Algorithm 2.
Therefore, in each round of the algorithm, the total number of messages sent is O(log3 n) and the
expected total number of bits sent is O(|m| + log4 n). The expected resource costs of the entire
algorithm then follow directly from the fact that there are O(1) rounds in expectation.

Lemma 6. For any fixed k, for C sufficiently large but depending only on k, the following is true
with probability at least 1 − 1/nk if we run Algorithm 2:

7

• All calls to lookup succeed.

• All calls to lookup have latency O(log n) in expectation.

• All calls to lookup require O(log4 n) messages to be sent in expectation.

• All calls to lookup require O(|m| log n + log5 n) bits to be sent in expectation.

Proof. Consider a message m which is sent along a path described by the sequence: p, Q1, Q2,
Q3, . . . , Ql, q, where p belongs to Q1 and q belongs to Ql. Here peer p sends all pieces of m and
fingerprints of these pieces to Q1 = Q(p), Q2 sends the pieces and fingerprints to Q2 via Algorithm 2,
Q2 sends the pieces and fingerprints to Q3 via Algorithm 2 and so on until finally all peers in
quorum Ql sends all their pieces and fingerprints to peer q. Since, |G(Q1)| ≥ 1/2|Q1|, Lemma 5
and induction give that |G(Ql)| ≥ 1/2|Qj| and that all peers in Ql have all the fingerprints of these
pieces. This implies that when peers in Ql send their pieces and fingerprints to q, q will have enough
information to reconstruct the message m. The latency, message complexity, and bit complexity
follow immediately from Lemma 5 and the fact that l ∈ O(log n).

4 Function Construction and Estimates of lnn

In this section, we address the construction of functions h1 and h2 that are necessary for Algorithms 1
and 2. We then briefly address correctness for both Algorithm 1 and Algorithm 2 when lnn is not
known precisely and estimates must be used.

4.1 Constructing Functions h1 and h2

In order for Algorithm 1 to be correct, the following must be true. First, the good peers must be
mapped by h1 and h2 to bins uniformly at random in the appropriate ranges. Second, the assignment
of all peers to bins must be known unambiguously to all good peers in L and R. Consider the function
h1. At first glance, a commonly known hash function that maps peer IDs to the non-negative integers
modulo lnn would appear to suffice. Unfortunately, such a setup, while satisfying the second criteria,
may fail to satisfy the first. That the adversary knows exactly how h1 behaves is not problematic;
we always assume the adversary can place the bad peers into whichever bin(s) it pleases. Rather, the
problem is that the adversary can assign its peers IDs that all map to a specific set of bins B′. Since
IDs are of fixed length, there are a finite number of IDs that map to bins in B′ and, consequently,
fewer IDs that map to B′ will be available to good peers; this bias ruins the assumption that good
peers are mapped to bins uniformly at random.

Fortunately, there is a simple solution. Upon joining the network at quorum L, a peer p
generates a bin number bp uniformly at random in {1, ..., lnn} using an internal random number
generator. Bad peers may select their own bin number. Peer p tells all peers in L the value bp. In
order to prevent any ambiguity that might arise from a bad peer telling different peers in L different
values for bp, all peers in L come to consensus on the value received using a standard Byzantine
agreement protocol. The peers in R are subsequently informed via all-to-all communication between
R and L. In this way, peers in L and R know a peer’s bin number unambiguously whenever it joins
the network. The solution for constructing h2 is essentially identical.

4.2 Using Estimates of ln n

Since peers in a DHT are not likely to know the exact value of lnn, we briefly discuss how to modify
our algorithms to handle different estimates of lnn. It is shown in [4] that for any two peers p and
p′, (lower) estimates lp, lp′ and (upper) estimates up, up′ can be obtained such that:

lnn ≤ lp ≤ up′ ≤ lnn + C0 and lnn ≤ lp′ ≤ up ≤ lnn + C0

for fixed constant C0. We can then view h1 and h2 as mapping the identifier space to the non-negative
integers and, therefore, we can then change the first two bullets of Algorithm 1 as follows:

8

• Each peer ℓ ∈ L sends a message to peer r ∈ R if h1(ℓ) = h2(r) mod lℓ

• Each peer r ∈ R accepts a message from peer ℓ ∈ L if h1(ℓ) = h2(r) mod ur

Showing the modified algorithm is correct requires only minor modifications of the proof of Lemma 2.
Let B again be the set of bins from 1 to lnn. It is straightforward to show that, with high probability,
an arbitrarily small fraction of the bins in B are “bad”. Then, with high probability, an arbitrarily
large fraction of the peers in Qj fall in bins in B which are good.

The modifications to the Algorithm 2 are as follows. The peer p which starts sending the
message m encodes m into lp pieces and creates fingerprints for all of these pieces. When it sends the
fingerprints to the quorum Qj−1, it also sends the number lp to all peers in Qj. The peers in Qj−1

then use this number lp as their estimate of ln n. When the peers in Qj−1 send the fingerprints to
peers in Qj , all peers in Qj−1 also send the number lp to all peers in Qj . In this way, we maintain the
invariant that all peers in the quorums that m is sent to know and use the estimate, lp, calculated
by p. We finally note that both algorithms are robust to minor inconsistencies in the views the peers
have as to which peers are in the quorums Qj−1 and Qj .

5 Conclusion

We have presented new algorithms for reducing communication costs in peer-to-peer networks that
are robust against a dynamic adversary. Our algorithms are compatible with any type of p2p network
that maintains quorums with strictly less than a 1/4 fraction of Byzantine nodes in each quorum.
Further, our algorithms are fairly simple and therefore may be of use in practical p2p networks.

Many problems remain open including the following. First, we believe we can use the tech-
niques in this paper to reduce communication costs in radio networks. However, several tricky
problems still must be solved in order to apply our techniques to this new domain. Second, we
would like to prove lower-bounds on communication costs and the adversarial power that we can
tolerate. Are O(log2n) messages necessary to perform a robust lookup? Can we tolerate more than
a 1/4 fraction of bad peers in each quorum? Can we reduce the bit blowup to O(1) even against a
computationally unbounded adversary? Finally, we would like to demonstrate that these algorithms
are practical through simulation and possible use in a deployed system.

Acknowledgements: We gratefully thank Amos Fiat for his help with this paper.

References

[1] Baruch Awerbuch and Christian Scheideler. Towards a scalable and robust DHT. In 18th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), 2006.

[2] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure computation. In
Proceedings of the Twenty-Fifth ACM Symposium on the Theory of Computing (STOC), 1993.

[3] Amos Fiat and Jared Saia. Censorship resistant peer-to-peer content addressable networks. In
Proceedings of the Thirteenth ACM Symposium on Discrete Algorithms (SODA), 2002.

[4] Amos Fiat, Jared Saia, and Maxwell Young. Making chord robust to byzantine attacks. In
Proceedings of the 13th Annual European Symposium on Algorithms (ESA), pages 803–814,
2005.

[5] Kristen Hildrum and John Kubiatowicz. Asymptotically efficient approaches to fault-tolerance
in peer-to-peer networks. In Proceedings of the 17th International Symposium on Distributed
Computing, 2004.

[6] Michael G. Luby, Michael Mitzenmacher, M. Amin Shokrollahi, Daniel A. Spielman, and Volker
Stemann. Practical loss-resilient codes. In Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing, pages 150 – 159, 1997.

9

[7] Moni Naor and Udi Wieder. A simple fault tolerant distributed hash table. In Proceedings of
the Second International Workshop on Peer-to-Peer Systems (IPTPS), 2003.

[8] B. Prabhu, K. Srinathan, and C. Pandu Rangan. Asynchronous unconditionally secure compu-
tation: An efficiency improvement. In INDOCRYPT 2002, Lecture Notes in Computer Science,
volume 2551, pages 93–107. Springer-Verlag, 2002.

[9] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A scalable
content-addressable network. In Proceedings of the 2001 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications, 2001.

[10] K. Srinathan and C. Pandu Rangan. Efficient asynchronous secure multiparty distributed
computation. In INDOCRYPT 2000, Lecture Notes in Computer Science, volume 1977, pages
117–129. Springer-Verlag, 2000.

[11] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. In Proceedings of the 2001 ACM
SIGCOMM Conference, 2001.

[12] Ben Y. Zhao, John Kubiatowicz, and Anthony D. Joseph. Tapestry: An infrastructure for fault-
resilient wide-area location and routing. Technical Report UCB//CSD-01-1141, University of
California at Berkeley Technical Report, April 2001.

10

