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Abstract

In the spirit of competitive analysis, approximation guarantees, and game-theoretic treatments, we
introduce a fresh approach to evaluating the performance of attack-resistant algorithms in distributed
systems. This new approach, which we call resource-competitive analysis, is concerned with the worst-
case ratio of the cost incurred by an algorithm to the cost incurred by any adversarial strategy. Here,
the notion of cost corresponds to any network resource such as bandwidth, computational power, or an
onboard energy supply. An adversary who attacks the system is assumed to control and coordinate a
large number of Byzantine users that can exhibit arbitrary deviation from any prescribed protocol; in
other words, the adversary may select any strategy, whether it be rational or not.

In a homogeneous network where all devices, correct and Byzantine, are resource constrained, rela-
tive cost is an especially well-motivatedmetric. An adversarywho successfully attacks the system will be
penalized by incurring a significantly higher cost than that experienced by correct users. Consequently,
the adversary is forced to either (i) cease her malicious behavior or (ii) rapidly deplete the resources of her
Byzantine users in perpetrating her attack. For a multitude of well-known distributed denial-of-service
(DDoS) scenarios, this type of guarantee can be extremely valuable. Indeed, the utility of this approach
has already been demonstrated for settings involving wireless ad-hoc networks where devices are bat-
tery powered and, thus, energy-constrained. Ultimately, we believe that resource-competitive analysis
constitutes a useful technique for mitigating Byzantine behavior and that this approach to designing
attack-resistant algorithms will find application in many other areas of distributed computing.

Hewho wishes to fight must first count the cost.

—Ts’ao Kung, The Art of War by Sun Tzu [28]

1 Introduction

As the sun rose on Rome in mid-March 537 AD, the defenders perched upon the city fortifications were

confronted with the sight of four colossal siege towers. Laboriously constructed by Ostrogothic engineers

and mobilized by teams of oxen, these massive war machines slowly advanced on the Salarian Gate. Fewer

than 5,000 Roman soldiers remained to repel the attack; a pitiful number in contrast to the roughly 45,000

Ostrogoths arrayed on the battlefield below eagerly anticipating a breaching of the city walls. Despite

this dire situation, the famed Byzantine general charged with the defense of Rome, Flavius Belisarius,

could not contain his laughter. As if this odd behavior was not enough to set them on edge, the soldiers

were further demoralized as their general commanded that the enemy be permitted to advance without

hindrance. However, when the towers had reached the city moat, Belisarius directed his archers to target

not the Ostrogoth belligerents, but the oxen below, all of which were quickly felled. Left standing with no

method to propel them the remaining distance, these elaborate siege towers were reduced to nothing more

than useless ornaments on the battlefield [19].

While the defensive tactics of the Byzantine Empire may differ from our approaches to safeguarding

modern-day distributed systems, this historical event illustrates an enduring truth regarding conflict: Attack-

ing a well-protected structure is more costly for the attackers than for the defenders. When the structure

in question is a city, Belisarius’ actions provide an acute example of this principle — an aggressive siege

attempt crippled in exchange for a few handfuls of arrows! When the structure is a collection of networked

computers, we argue that the principle remains equally valid.
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The ideas required to translate this key notion into the analytical domain are encompassed by a new

approach to evaluating the effectiveness of attack-resistant distributed algorithms that we call resource-

competitive analysis. At its heart, this method of analysis concerns itself with the worst-case ratio of the

cost incurred by the algorithm to the cost incurred by an attacker who may adopt any strategy. In this

position paper, we argue that this new metric can be used to inform algorithm design in distributed systems.

A Roadmap: The remainder of this position paper is comprised of four main sections. In Section 2, we

motivate and introduce the notion of resource-competitive analysis. In Section 3, we provide several ex-

amples outside of distributed computing where adopting a relative-cost perspective has proven useful, often

dramatically so. In Section 4, we apply this definition to problems from the area of wireless sensor networks

and demonstrate that resource-competitive analysis yields promising solutions. Finally, we summarize our

arguments in Section 5 and pose several open problems regarding both the full scope and limitations of this

new approach.

2 Walking a Mile in the Adversary’s Shoes

Over the past decade, Byzantine fault tolerance in distributed systems has consistently been a topic of

great interest to the research community (for examples, see [1, 9, 20, 24] and surveys [29, 31]). In systems

that lack reliable admission control or any central authority, a number of fundamental distributed tasks

become extremely challenging when network devices or users — referred to hereafter as nodes — cannot

be trusted to obey protocol. Typically, these Byzantine nodes are assumed to constitute a large portion of

the network while colluding to disrupt the availability of some critical system functionality. To this end, a

single adversary is often assumed to be coordinating the malicious actions of all Byzantine nodes.

In order to overcome such attacks, much of the work produced by the distributed computing community

has focused on the number of faulty nodes that can be tolerated while minimizing the required time or

communication overhead since these latter metrics translate into network costs. For example, a typical

constraint is that the amount of resources required by correct nodes to execute an algorithm should be small

relative to the network size n; typically, logarithmic or polylogarithmic in n. This approach makes sense for

many settings where the correct nodes correspond to a homogeneous population of machines with relatively

limited computational power or bandwidth. For example, in a peer-to-peer (P2P) network, we wish to

ensure small local routing tables and low communication overhead for storage and retrieval operations;

these properties should not be sacrificed in the face of Byzantine faults.

When the adversary is unconcerned with expending its own resources — perhaps because these re-

sources are held in abundance or can be easily replenished — an attack-resistant algorithm that minimizes

the burden on correct nodes is the best solution for which one can hope. However, what if the adversary

suffers the same dearth of a common and critical resource?

In such a situation, this traditional approach to attack resistance now presents a one-sided picture. Cru-

cially, it no longer makes sense to consider an adversary who may launch attacks at no cost to herself.

Instead, in addition to emphasizing correctness and scalability, a more complete perspective comes from

treating this scarce resource as a form of common currency in the system and gauging the performance of an

algorithm by the relative costs inflicted upon both the correct and Byzantine nodes. If the costs to the latter

are disproportionately high, then the algorithm has obvious value. Specifically, sustained attacks aimed at

disrupting the availability of a critical functionality are no longer feasible since an adversary rapidly depletes

her resources in engaging in such denial-of-service behaviour.

Defining Resource Competitiveness

In this position paper we provide a new notion of “competitiveness” that we call resource competitiveness.

Each of n players pi is classified as either correct, if its actions are prescribed by an algorithm A, or faulty

otherwise; define P as the set of correct players and F as the set of faulty players. The faulty players

are assumed to collude and coordinate their attacks; therefore, we view them as being controlled by a

single adversary. The resource budgets of the Byzantine players is assumed to be finite; however, the exact

budgetary constraints may not be known.
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Let C(α, i) denote the resource expenditure (or cost) to a player pi over an execution α. If pi is correct,
then C(α, i) is the cost incurred by pi for executing the actions prescribed byA in an execution α. Otherwise,
pi is faulty and C(α, i) is the cost incurred by pi for pursuing any arbitrary strategy in an execution α. The
membership of P and F are not necessarily known to A a priori and may be, in part, selected adversarially.

We can now provide a concrete example of what it means to be resource competitive. Let T =
(1ρ ·

∑
pj ∈ F C(α, j)) for a parameter ρ > 1. Then we can consider A to be resource competitive if

maxpi ∈ P {C(α, i)} ≤ T + τ for any execution α and some parameter τ > 0. Ignoring τ for the moment,

this means that A is resource competitive if the maximum cost incurred by any correct player is a ρ-factor
less than the sum of the costs incurred by the faulty nodes; clearly, a large ρ is desirable. In terms of appli-

cability, consider a network where maximizing the lifetime of all correct nodes is critical; this comparison

between the maximum and aggregate costs motivates algorithms that minimize the worst-case relative cost

to any single correct player.

Why do we require τ? Consider an execution where the faulty players incur zero cost. Clearly, in this

case, no algorithm will allow the correct players to incur less cost than the adversary. This is to be expected

since, even in the absence of malicious interference, the correct nodes must incur some unavoidable cost to

perform an execution. The same reasoning applies when the faulty players incur small, but non-zero, cost in

attacking the network. There must exist some τ where, for T ≤ τ (ie. small attacks), each correct player will

successfully terminate with a small absolute cost, but we may not spend less than the T spent by adversary.

However, for T ≥ ρτ (ie. larger attacks), the term T dominates the right side of the resource-competitive

equation and each correct player experiences less cost than the adversary. Clearly, a small τ is desirable.

In Section 4, we cite resource-competitive algorithms which require that each correct player initially

incurs a small cost. If the faulty players are inactive or interfere very little, then each correct player will

succeed. Otherwise, the correct players amplify their efforts throughout the execution, thus forcing the

adversary to incur an increasingly larger cost in order to prevent their successful termination. This can be

viewed as adaptive behaviour; the costs to the correct players increases as the adversary’s costs increase and,

ultimately, the former is smaller relative to the latter.

Another natural comparison is
∑

pi ∈ P {C(α, i)} ≤ 1
ρ(
∑

pj ∈ F C(α, j)) + τ . For example, in a net-

work where the primary concern is that at least one correct player survive the attack, perhaps to sound

an alarm, we may be concerned that the aggregate cost over all correct players be less than the aggre-

gate cost incurred by the adversary. Alternatively, a more stringent comparison of maxpi ∈ P {C(α, i)} ≤
1
ρ(minpj ∈ F {C(α, j)}) + τ . For example, given that players have homogeneous finite resource budgets,

such an algorithm implies that roughly ρ faulty players will exhaust their respective budgets for every one

of the correct nodes that exhausts its budget.

Wemay also consider statistics such as the average or median cost. Furthermore, if a resource-competitive

algorithm is randomized, then we can speak of cost in terms of expectation or with a high probability guar-

antee. Given this variety, we provide the following formal definition of resource competitiveness:

Definition 1. Let g(·) and a(·) be functions that take as input the set of costs for the correct and faulty

players, respectively. Let T = 1
ρ · a({C(α, j)}pj ∈ F ). Then, an algorithm A is (ρ, g, a, τ)-resource-

competitive if g({C(α, i)}pi ∈ P ) ≤ T + τ for any execution α and some τ > 0. The parameter ρ is called

the “resource-competitive ratio”.

When g(·), a(·), and τ are clear from the context, we simply state that A is ρ-resource-competitive. It is

important to emphasize that ρ need not be a constant; in fact, a natural approach is to have ρ be a function

of T as we will see in Section 4.

Finally, we note that Byzantine behaviour need not necessarily arise from intentionally malicious ac-

tions. For example, arbitrary faults may occur due to malfunctioning nodes. Treating such occurrences as

having been engineered by an adversary simply allows us to prove guarantees under worst-case scenarios re-

gardless of whether an adversary actually exists. In the case of malfunctioning nodes, a resource-competitive

result provides guarantees on the level and duration of interference required to prevent successful network

operations. Eventually, the malfunctioning nodes will expire and the correct nodes will succeed given their

resource-competitive advantage.
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3 Related Ideas — Towards Resource-Constrained Adversaries

The notion of inflicting higher relative costs on an opponent, with the ultimate goal of financial ruin, arguably

has its analytical roots in economics. When asked whether he would buy a one-hundred dollar bullet-proof

vest to protect himself from a five-cent bullet, Nobel Prize-winning economist Thomas Schelling says of the

would be shooter that:

“He has wasted his money if the vest is cheap, made a splendid investment if my vest is expensive, and if

asked what he accomplished by buying his bullet should have the good sense to say that he imposed a cost

on me, not that he hoped to kill me and was frustrated.” [25]

The concept of competitiveness has appeared in several areas of computer science. Indeed, in the anal-

ysis of algorithms, we often consider the “relative performance” of an algorithm — this notion underlies

competitive analysis and approximation algorithms. One commonly analyzes the worst-case performance

of an online algorithm A relative to an optimal algorithm OPT that has full information regarding the

input [26]. A closely related technique for algorithm analysis is that of establishing approximation guar-

antees. In this case, a similar definition applies with the major difference being that A has full knowledge

of the input a priori. Both notions allow us to measure performance relative to an optimal algorithm un-

der worst-case inputs which are often thought of as having been selected by an adversary. In this context,

resource-competitive analysis offers a new measure of relative performance or competitiveness where we

may now be competing directly with truly malicious (or adversarially malfunctioning) entities.

Not surprisingly, the idea of competition between correct and faulty participants arises more explic-

itly in the area of security. In their influential paper “New Directions in Cryptography” [11], Diffie and

Hellman state that the goal in designing a cryptographic system “is to make the enciphering and decipher-

ing operations inexpensive, but to ensure that any successful cryptanalytic operation is too complex to be

economical.” This idea that an attacker is burdened by a disproportionate cost in attempting to break a

cryptosystem underlies all modern-day cryptosystems. From a complexity perspective, inverting certain

functions is believed to require enormous computational resources. By tuning a security parameter this cost

can be so exorbitantly high that compromising the cryptosystem is believed to be infeasible.

A crucial difference between these cryptographic approaches and resource competitiveness is that, in

the latter, it is not necessarily possible to obtain a ρ that is so large that the adversary is prevented from

successfully attacking. However, by launching a successful attack, the adversary will be required to incur a

cost that is much larger than that incurred by the correct nodes; we provide concrete examples in Section 4.

In this sense, resource competitiveness can be seen as providing a deterrent rather than a guarantee on the

security of the system.

Another difference is that the length of a private key is decided prior to the encryption of data. This

roughly determines how much the adversary must spend in order to compromise the cryptosystem. In

contrast, as discussed in Section 2, resource competitive algorithms are, in some sense, adaptive. While this

has advantages, it also implies that the algorithm may require nodes to expend some unknown amount of

resources that is a function of what the adversary spends. For homogeneous, resource-constrained networks,

this property seems appropriate.

Examples From Distributed Systems

Moving to the area of distributed computing, there are a number of places where related ideas make an

appearance. A primary example arises in settings where identities are cheap. Consequently, once a node

is revealed to be misbehaving, it may leave and rejoin the system without penalty. Therefore, it is sensible

to issue a cost for joining; for example, the use of a Turing test or a CAPTCHA [6, 17, 32], computational

puzzles [15, 27], or even monetary penalties [8] have been proposed. These approaches impose a resource

penalty in order to obtain a rate-limiting effect on the number of adversarial identities that can be placed in

the system. Similarly, the social cost of establishing links between two nodes in a social network graph has

been exploited to prove topological properties that mitigate Sybil attacks [33].
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A related idea involves examining the efficiency of an attack. In the wireless domain, the jamming gain

of a protocol roughly provides a measure of how long the adversary can delay the successful termination

of the correct nodes by spending one unit of energy to jam the communication channel (see [7, 12]). Note

that this definition focuses on the time delay experienced by nodes executing the algorithm; this does not

necessarily translate into a cost since a node may not perform any expensive operations over this duration

(for example, it may be idle). Conversely, knowledge of the costs to the adversary and correct players over

an execution may not imply anything about the jamming gain of a protocol; such information depends on

the details of the protocol (see Section 4). Therefore, it seems these two metrics are distinct.

As a final illustration, we note that real-world adversaries are already employing similar tactics in the

form of distributed denial-of-service (DDoS) attacks. Here, an attacker typically makes use of a botnet to

pummel a server with a large volume of requests. At the transport layer, such attacks are aimed at consuming

the maximum number of available connections to the server. At the application layer, the requests themselves

are expensive to service and the server is overwhelmed. These DDoS attacks illustrate the effectiveness of

inflicting a disproportionate cost, in terms of bandwidth or computational power, on an opponent. On the

other hand, a number of results aim at mitigate DDoS attacks by forcing a client to make a “down payment”

in terms of bandwidth or computational power prior to receiving service (see [30] and references therein).

Overall, these examples illustrate an underlying movement towards quantifying a cost that an adversary

must pay. In this sense, resource competitiveness quantifies an idea that has already implicitly arisen in

isolated instances. Our goal is to make this idea explicit and argue that translating this idea — an idea that

has been successfully applied in other areas of computer science — to the realm of distributed computing

provides us a fresh and valuable approach to adversarial fault tolerance.

Are We Playing a Game?

Given the economic flavour of resource-competitive analysis, we contrast this approach with game the-

ory [18, 23]. Here, nodes (or players) are assumed to be autonomous and governed by self-interested be-

haviour. Game theory provides us with yet another measure of competitiveness known as the “price of

anarchy” which is the ratio of the worst-case Nash equilibrium to the global social optimum.

There are several differences in the approaches taken by resource-competitive analysis and game theory.

In the former, each node either obeys protocol or it does not; in the latter, we typically consider self-

interested players endeavoring to maximize their respective utility functions. Furthermore, incorporating

Byzantine behaviour into game theory has proved challenging; indeed, this is a topic of recent interest

(see [2]). The model of BAR (Byzantine, Altruistic, Rational) games [10] addresses these issues; indeed,

the model is general enough to subsume traditional Byzantine approaches — in this context, resource-

competitive analysis is concerned only with altruistic and Byzantine players. However, even in this model,

the cost to a Byzantine player is difficult to quantify since doing so requires making assumptions about its

utility function. In contrast, resource-competitive analysis is focused on quantifying the cost of a successful

attack by the adversary without the need to specify an unknown utility function. It is this ability to quantify

the adversary’s cost that allows for the idea of depleting an adversary’s (or malicious player’s) resources.

4 Existing Resource-Competitive Results for Wireless Communication

In wireless sensor networks (WSNs), nodes correspond to battery-powered devices and energy consumption

is a critical concern since, once depleted, it may be infeasible to replace the power supply. Furthermore, if

we consider an adversary that compromises existing nodes or deploys its own nodes in the network, we have

an attack model where the common constrained resource for both correct and Byzantine nodes is energy.

Communication in WSNs is notoriously unreliable and can easily be disrupted by an attacker who delib-

erately interferes with the wireless medium. Such jamming attacks have received significant attention from

the research community given the ease of perpetrating such attacks and their effectiveness (see [31] and

references therein). Since both sending on and listening to the channel is expensive, attempting to naively

outspend a jamming attacker can be a losing strategy.
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A fundamental problem is single-hop communication between two nodes, say Alice and Bob, in a WSN.

Here, Alice wishes to guarantee transmission of a message m directly to Bob over a single communication

channel. However, a jamming adversary wishes to prevent prevent communication. The main result in [14] is

a Las Vegas communication protocol where, if the adversary spends T slots interfering with communication,

the total expected cost to Alice and Bob isO(Tϕ−1+1) = O(T 0.62+1) prior to successfully communicating

where ϕ is the golden ratio. Using Definition 1 in Section 2, g(·) = O(Tϕ−1) is the aggregate cost of both
Alice and Bob, a(·) is the sum total cost T incurred by the adversary, τ = O(1), and ρ = Ω(T 2−ϕ); note
that ρ is a function of T here, as discussed earlier in Section 2.

A more recent resource-competitive algorithm for WSNs addresses a different attack model [13]. Here,

a Monte Carlo protocol is given that allows for communication of a message m from a single sending node

to n receiving nodes. Specifically, with high probability, all but a (1 − ǫ)-fraction of the receivers obtain

m even in the presence of Θ(n) Byzantine nodes. For an adversary that incurs a cost of T for interfering

with communication, the sender and each of the receivers experience a cost of Õ(T 1/k + 1) for a constant
k chosen a priori. Again, using Definition 1, g(·) is the maximum individual cost over the sender and all

receivers, a(·) is the sum total cost incurred by theΘ(n) Byzantine nodes, τ = Õ(1), and ρ = Ω(T (k−1)/k).
Finally, both protocols admit an analysis where, in order to have a constant probability of preventing

successful termination within S slots, the adversary must jam (1 − δ)S slots for a small constant δ > 0.
Loosely interpreted: if the adversary spends one unit of energy, then she can expect to delay successful ter-

mination by roughly 1/(1− δ) slots. The correspondence is not exact since these protocols are randomized,

but it does provide insight into how resource competitiveness can imply results related to jamming gain.

5 Conclusion

Regarding the fate of Rome, the efforts of Belisarius were ultimately successful in fending off the Ostro-

gothic siege and, in later years, greatly expanding Byzantium. Of course, in true Byzantine fashion, fearing

Belisarius’ growing popularity, the Emperor Justinian was later involved in having his star general arrested

on false corruption charges [16]. However, politics aside, the defensive tactics of Belisarius illustrate a use-

ful concept that has been employed, with less bloodshed, in the field of computer science. Indeed, the aim of

this position paper has been to make explicit an idea whose effectiveness has already been demonstrated in

isolated cases within the context of distributed computing. We feel that resource competitiveness is relevant

to attack resistance and we believe it will be useful to the research community.

We have seen how this approach can be applied to attack-resistant single-hop communication. Can other

canonical distributed computing problems be explored in this context? For example, can we find resource-

competitive consensus protocols? Byzantine agreement? If so, what limits exist on the advantage yielded to

the correct nodes? Conversely, the question of lower bounds on ρ remains largely open.

In the WSN domain is the attack model where, for every sufficiently large window of time, an adversary

may jam the channel over a (1 − ǫ)-fraction of the window where ǫ > 0 is an arbitrarily small constant [5,

21,22]. In some sense, such an adversary has its resources renewed in every new window, but is constrained

within a single window. Can we apply a resource-competitive approach to such adversaries?

Another open problem involves using a resource-competitive approach to implement shared data struc-

tures in a Byzantine environment. Methods for doing this make use of large quorums to “read” and “write”

to the data structure, and are thus open to denial-of-service type attacks where an adversary forces many

messages to be sent by initiating, at relatively low cost, reads and writes [4].

Finally, the notion of resource competitiveness may provide a useful formalism for interpreting other

results on mitigating attacks. For example, independent of [14], Asharaf et al. [3] propose a number of

clever heuristic approaches aimed at “bankrupting” a jamming adversary. Can these results be formally

analyzed using the framework of resource competitiveness? Another example is DDoS attacks in the client-

server scenario. As mentioned in Section 3, many proposals for defending against such attacks rely on

forcing the clients to incur larger costs. Perhaps these results can be interpreted via Definition 1; indeed,

some preliminary results addressing DDoS attacks in the client-server scenario are discussed in [14].
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