
Interactive Communication with Unknown Noise RateI

Varsha Dania,∗, Mahnush Movahedia, Thomas P. Hayesa, Jared Saiaa,1, Maxwell Youngb,2

aDepartment of Computer Science, University of New Mexico, Albuquerque, NM, USA
bComputer Science and Engineering Department, Mississippi State University, Starkville, MS, USA

Abstract

Alice and Bob want to run a protocol over a noisy channel, where a certain number of bits are flipped

adversarially. Several results take a protocol requiring L bits of noise-free communication and make it

robust over such a channel. In a recent breakthrough result, Haeupler described an algorithm that sends

a number of bits that is conjectured to be near optimal in such a model. However, his algorithm critically

requires a priori knowledge of the number of bits that will be flipped by the adversary.

We describe an algorithm requiring no such knowledge. If an adversary flips T bits, our algorithm

sends L + O
(√

L(T + 1) logL+ T
)

bits in expectation and succeeds with high probability in L. It does

so without any a priori knowledge of T . Assuming a conjectured lower bound by Haeupler, our result is

optimal up to logarithmic factors.

Our algorithm critically relies on the assumption of a private channel. We show that privacy is necessary

when the amount of noise is unknown.

1. Introduction

How can two parties run a protocol over a noisy channel? Interactive communication seeks to solve this

problem while minimizing the total number of bits sent. Recently, Haeupler [2] gave an algorithm for this

problem that is conjectured to be optimal. However, as in previous work [3, 4, 5, 6, 7, 8, 9, 10], his algorithm

critically relies on the assumption that the algorithm knows the noise rate in advance, i.e., the algorithm

knows in advance the number of bits that will be flipped by the adversary.

In this paper, we remove this assumption. To do so, we add a new assumption of privacy. In particular,

in our model, an adversary can flip an unknown number of bits, at arbitrary times, but he never learns the

value of any bits sent over the channel. This assumption is necessary: with a public channel and unknown

ISome of the results of this paper appeared in the extended abstract [1] published in the Proceedings of the 42nd International
Colloquium on Automata,Languages and Programming (ICALP 2015)

∗Corresponding author
Email addresses: varsha@cs.unm.edu (Varsha Dani), movahedi@cs.unm.edu (Mahnush Movahedi), hayes@cs.unm.edu

(Thomas P. Hayes), saia@cs.unm.edu (Jared Saia), myoung@cse.msstate.edu (Maxwell Young)
1This research was supported in part by NSF grant CNS-1318294.
2This research was supported in part by NSF grants CNS-1318294 and CCF-1420911.

Preprint submitted to Information and Computation July 30, 2015

noise rate, the adversary can run a man-in-the-middle attack to mislead either party (see Theorem 6.1,

Section 6).

Problem Overview. We assume that Alice and Bob are connected by a noisy binary channel. Our goal is to

build an algorithm that takes as input some distributed protocol π that works over a noise-free channel and

outputs a distributed protocol π′ that works over the noisy channel.

We assume an adversary chooses π, and which bits to flip in the noisy channel. The adversary knows our

algorithm for transforming π to π′. However, he neither knows the private random bits of Alice and Bob,

nor the bits sent over the channel, except when it is possible to infer these from knowledge of π and our

algorithm.

We let T be the number of bits flipped by the adversary, and L be the length of π. As in previous work,

we assume that Alice and Bob know L.

Our Results. Our main result is summarized in the following theorem.

Theorem 1.1. Algorithm 3 tolerates an unknown number of adversarial errors, T , succeeds with high prob-

ability in the transcript length3, L, and if successful, sends in expectation L + O
(√

L(T + 1) logL+ T
)

bits.

The number of bits sent by our algorithm is within logarithmic factors of optimal, assuming a conjecture

from [2] (see Theorem 6.3).

Results in this paper first appeared in conference proceedings [1].

1.1. Related Work

For L bits to be transmitted from Alice to Bob, Shannon [11] proposes an error correcting code of size

O(L) that yields correct communication over a noisy channel with probability 1 − e−Ω(L). At first glance,

this may appear to solve our problem. But consider an interactive protocol with communication complexity

L, where Alice sends one bit, then Bob sends back one bit, and so forth where the value of each bit sent

depends on the previous bits received. Two problems arise. First, using block codewords is not efficient; to

achieve a small error probability, “dummy” bits may be added to each bit prior to encoding, but this results

in a superlinear blowup in overhead. Second, due to the interactivity, an error that occurs in the past can

ruin all computation that comes after it. Thus, error correcting codes fall short when dealing with interactive

protocols.

The seminal work of Schulman [12, 3] overcame these obstacles by describing a deterministic method for

simulating interactive protocols on noisy channels with only a constant-factor increase in the total commu-

nication complexity. This work spurred vigorous interest in the area (see [13] for an excellent survey).

3Specifically with probability at least 1− 1
L logL

2

Schulman’s scheme tolerates an adversarial noise rate of 1/240. It critically depends on the notion of a

tree code for which an exponential-time construction was originally provided. This exponential construction

time motivated work on more efficient constructions [7, 14, 15]. There were also efforts to create alternative

codes [8, 16]. Recently, elegant computationally-efficient schemes that tolerate a constant adversarial noise

rate have been demonstrated [5, 10]. Additionally, a large number of powerful results have improved the

tolerable adversarial noise rate [4, 6, 9, 17, 18].

The closest prior work to ours is that of Haeupler [2]. His work assumes a fixed and known adversarial

noise rate ε, the fraction of bits flipped by the adversary. Communication efficiency is measured by commu-

nication rate which is L divided by the total number of bits sent. Haeupler [2] describes an algorithm that

achieves a communication rate of 1 − O(
√
ε log log(1/ε), which he conjectures to be optimal. We compare

our work to his in Section 6.

Feinerman, Haeupler and Korman [19] recently studied the interesting related problem of spreading a

single-bit rumor in a noisy network. In their framework, in each synchronous round, each agent can deliver

a single bit to a random anonymous agent. This bit is flipped independently at random with probability

1/2− ε for some fixed ε > 0. Their algorithm ensures with high probability that in O(log n/ε2) rounds and

with O(n log n/ε2)) messages, all nodes learn the correct rumor. They also present a majority-consensus

algorithm with the same resource costs, and prove these resource costs are optimal for both problems.

1.2. Formal Model

Our algorithm takes as input a protocol π which is a sequence of L bits, each of which is transmitted

either from Alice to Bob or from Bob to Alice. As in previous work, we also assume that Alice and Bob

both know L. We let Alice be the party who sends the first bit in π.

Channel Steps. We assume communication over the channel is synchronous and individual computation is

instantaneous. We define a channel step as the amount of time that it takes to send one bit over the channel.

Silence on the Channel. When neither Alice nor Bob sends in a channel step, we say that the channel is

silent. In any contiguous sequence of silent channel steps, the bit received on the channel in the first step is

set by the adversary for free. By default, the bit received in subsequent steps of the sequence remains the

same, unless the adversary pays for one bit flip in order to change it. In short, the adversary pays a cost of

one bit flip each time it wants to change the value of the bit received in any contiguous sequence of silent

steps.

1.3. Overview of Our Result

Challenges. Can we adapt prior results by guessing the noise rate? Underestimation threatens correctness if

the actual number of bit flips exceeds the algorithm’s tolerance. Conversely, overestimation leads to sending

more bits than necessary. Thus, we need a protocol that adapts to the adversary’s actions.

3

One idea is to adapt the amount of communication redundancy based on the number of errors detected

thus far. However, this presents a new challenge because the parties may have different views of the number

of errors. They will need to synchronize their adaptions over the noisy channel. This is a key technical

challenge to achieving our result.

Another technical challenge is termination. The length of the simulated protocol is necessarily unknown,

so the parties will likely not terminate at the same time. After one party has terminated, it is a challenge

for the other party to detect this fact based on bits received over the noisy channel.

A high-level overview of how we address these challenges is given in Section 2.4.

1.4. Paper Organization

The rest of this paper is organized as follows. In Section 2, we describe a simple algorithm for interactive

communication that works when T = O(L/ logL). We analyze this algorithm in Section 3. In Section 4,

we describe an algorithm for interactive communication that works for any finite T ; we prove this algorithm

correction in Section 5. Section 6 gives some relevant remarks, including justifying private channels and

comparing our algorithm with past work. Finally, we conclude and give directions for future work in Section 7.

2. Bounded T - Algorithm

In this section, we describe an algorithm that enables interactive communication problem when T =

O(L/ logL).

2.1. Overview, Notation and Definitions

Our algorithm is presented as Algorithm 1. The overall idea of the algorithm is simple: the parties

run the original protocol π for a certain number of steps as if there was no noise. Then, Alice determines

whether an error has occurred by checking a fingerprint from Bob. Based on the result of this verification,

the computation of π either moves forward or is rewound to be performed again.

2.2. Helper Functions

Before giving details of the algorithm, we first describe some helper functions and notation (see Figure 1).

Fingerprinting. To verify communication, we make use of the following well-known theorem.

Theorem 2.1. [Naor and Naor [20]] For any positive integer L and any probability p, there exists a hash

function F that given a uniformly random bit string S as the seed, maps any string of length at most L bits

to a bit string hash value H, such that the collision probability of any two strings is at most p, and the length

of S and H are |S| = Θ(log(L/p)) and |H| = Θ(log(1/p)) bits.

4

L The length of the protocol to be simulated.

π The L-bit protocol to be simulated, augmented by random bits to length
(

1 +
⌈
L
R0

⌉)
R0.

π[T , `] The result of the computation of the next ` bits of π after history T .

R0 Initial round size in the algorithm. This is the smallest power of 2 that is greater than
√
LF . So

√
LF ≤ R0 ≤ 2

√
LF

F The length of the fingerprint.

Ta Alice’s tentative transcript.

Tb Bob’s tentative transcript.

T ∗a Alice’s verified transcript.

T ∗b Bob’s verified transcript.

T [0 : `] The first ` bits of T . If |T | < L this is null

Figure 1: Glossary of Notation

We define two functions based on this theorem, h and MatchesFP. In this section, we will write hL to

denote that the probability of error p is polynomial in L. In particular, we can set p = 1/L2, with fingerprints

of size O(logL). The function hL(T) takes a transcript T and returns a tuple (s, f), where s is uniformly

random bit string and f is the output of the hash function F in the theorem above when given inputs s and

T . We refer to this tuple as the fingerprint of T .

The function MatchesFP((s, f), T) takes a fingerprint (s, f) and a transcript T . It returns true if and

only if the output of F when given bit string s and transcript T is equal to the value f . In both of these

functions, the total length of the fingerprint is given by the value F , which will be defined later.

Algebraic Manipulation Detection Codes. Our result makes critical use of Algebraic Manipulation (AMD)

Codes from [21]. These codes provide three functions: amdEnc, IsCodeword and amdDec. The function

amdEnc(m) creates an encoding of a message m. The function IsCodeword(m′) returns true if and only if

a received message m′ is equal to amdEnc(m) for some sent message m. The function amdDec(m′) takes a

received value m′, where IsCodeword(m′), and returns the value m such that amdEnc(m) = m′. Intuitively,

AMD Codes enable detection of bit corruptions on encoded words, with high probability.

We make use of the following theorem about AMD codes. This is a slight rewording of a theorem

from [21].

Theorem 2.2. [21] For any δ > 0, there exists functions amdEnc, IsCodeword and amdDec, such that,

for any bit string m of length x:

• amdEnc(m) is a string of length x+ C log(1/δ), for some constant C;

5

• IsCodeword(amdEnc(m)) and amdDec(amdEnc(m)) = m;

• For any bit string s 6= 0 of length x, Pr(IsCodeword(amdEnc(m)⊕ s)) ≤ δ

In this section, we set δ = 1/L2 and add O(logL) additional bits to the message word. Also in this section,

we will always encode strings of size O(logL), so the AMD encoded messages will be of size O(logL).

In the algorithm, we will denote the fixed length of the AMD-encoded fingerprint by F .

2.3. Remaining Notation

Transcripts. We define Alice’s tentative transcript, TA, as the sequence of possible bits of π that Alice has

either sent or received up to the current time. Similarly, we let TB denote Bob’s transcript. For both Alice or

Bob, we define a verified transcript to be the longest prefix of a transcript for which a verified fingerprint has

been received. We denote the verified transcript for Alice as T ∗A, and for Bob as T ∗B . The notation T 4 T ′

signifies that a transcript T is a prefix of a transcript T ′.

Rounds. We define one of Alice’s rounds as one iteration of the repeat loop in Alice’s protocol. Alice’s round

consists of ra channel steps, where ra is the round size value maintained by Alice. Similarly, we define one

of Bob’s rounds as one iteration of the repeat look in Bob’s protocol. Such a round consists of rb channel

steps, where rb is the round size for Bob.

Other Notation. For a transcript T and integer i, we define T [0 : i] to be the first i bits of T . For two

strings x and y, we define x� y to be the concatenation of x and y.

2.4. Algorithm Overview

To facilitate discussion of the algorithm, we first state some important properties of rounds (proven in

Section 3). First, the size of any round is always a power of two. Second, the start of each of Bob’s rounds

always coincides with the start of one of Alice’s rounds. This ensures that whenever Bob is listening for the

message F ′a, Alice will be sending such a message.

We first describe one of Alice’s rounds in which 1) neither Alice nor Bob terminate; and 2) there are no

adversarial bit flips. In such a round, Alice sends an encoded message containing two pieces of information.

These are ma, which is the number of failed rounds Alice has counted so far; and |T ∗a |, which is the size of

Alice’s verified transcript.

When Bob decodes this message, he synchronizes several values with Alice. In particular, he sets his

round size value, rb, and mistake estimate value, mb, so they equal the values Alice sent. Then, based on

|T ∗a |, Bob either increases the length of his verified transcript, or else decreases the length of his tentative

transcript. After this synchronization, Alice and Bob both compute a certain number of bits of π and add

6

Algorithm 1: Bounded Error Interactive Communication

ALICE’S PROTOCOL

1 Ta ← null; T ∗a ← null;

ma ← 0; ra ← R0;

2 repeat

3 Fa ← amdEnc(ma, ra, |T ∗a |);

4 Send Fa;

5 Append π[Ta, ra − 2F] to Ta;

6 Receive Bob’s F -bit message, F ′b;

7 if IsCodeword(F ′b) then

8 if |T ∗a | ≥ L then

9 Output T ∗a [0 : L] and

Terminate;

10 F ← amdDec(F ′b);

11 if MatchesFP(F , Ta) then

// successful round;

12 T ∗a ← Ta;

13 else

// round failed;

14 Ta ← T ∗a ;

15 ma ← ma + 1;

16 if 1 +ma is a power of 4 then

ra ← ra/2;

until17 ma =
R2

0

4F 2 − 1;

BOB’S PROTOCOL

1 Tb ← null; T ∗b ← null;

mb ← 0; rb ← R0;

2 repeat

3 Receive Alice’s F -bit message, F ′a;

4 if all bits of F ′a are equal then

// Alice has likely left;

5 Output T ∗b [0 : L] and

Terminate;

6 if IsCodeword(F ′a) then

7 (m, r, `)← amdDec(F ′a);

// synchronize values;

8 rb ← r;

9 mb ← m;

10 if ` > |T ∗b | then

11 T ∗b ← Tb;

12 else

13 Tb ← T ∗b ;

14 Append π[Tb, rb − 2F] to Tb;

15 Fb ← amdEnc(hL(Tb));

16 Send Fb;

17 else

// corruption occurred;

18 Send random bits for rb − F steps;

19 mb ← mb + 1 ;

20 if 1 +mb is a power of 4 then

rb ← rb/2;

until21 mb =
R2

0

4F 2 − 1;

7

these to their tentative transcripts. Finally Bob sends an encoded fingerprint to Alice. She verifies this

fingerprint, and then adds the bits of π computed during this round to her verified transcript.

There are two key ways in which adversarial bit flips can alter the above scenario. First, when the

encoded message Alice sends containing ma and |T ∗a | is corrupted. In this case, Bob will send random bits

for the remainder of the round. This ensures two things. First, whenever Alice is listening for a fingerprint

from Bob, Bob will either be sending a fingerprint or random bits. Thus, with high probability, the adversary

will be unable to forge an encoding of a fake fingerprint by flipping bits. Second, Bob’s error count updates

at the same time as Alice’s.

The other key way in which adversarial bit flips can alter the ideal scenario is as follows. The adversary

flips bits in such a way that the encoded fingerprint, F ′b that Bob sends to Alice, fails to be a valid fingerprint

for Alice’s tentative transcript. In this case, Alice rewinds her tentative transcript, increments her error count,

and updates her block size.

Handling Termination. In previous work, since ε and L′ are known, both parties know when to terminate (or

leave the protocol), and can do so at the same time. However, since we know neither parameter, termination

is now more challenging.

In our algorithm, π is augmented with a certain number of additional bits that Alice sends to Bob. Each

of these bits is set independently and uniformly at random by Alice. Alice terminates when her verified

transcript is of length greater than L. Bob terminates when he receives a value F ′a, where all bits are the

same. This conditions ensures that 1) Bob is very unlikely to terminate before Alice; and 2) Bob terminates

soon after Alice, unless the adversary pays a significant cost to delay this.

3. Bounded T - Analysis

We now prove that with high probability, Algorithm 1 correctly simulates π when T is promised to be

O(L/ logL). Before proceeding to our proof, we define two bad events.

Hash Collision. Either Alice or Bob incorrectly validates a fingerprint and updates their verified

transcript to include bits not in π.

Failure of AMD Codes The adversary corrupts an encoded message into the encoding or a different

message. Or the encoding of some message, after possible adversary corruption, equals a bit string of

all zeroes or all ones.

Throughout this section, we will assume neither event occurs. At the end of this section, we will show

that the probability that either even occurs is polynomially small in L.

Lemma 3.1. Each player’s round size is always a power of two.

8

Proof. This is immediate from the fact that the round size starts out as a power of 2 and the fact that each

time it decreases, it decreases by a factor of 2.

Lemma 3.2. ma is monotonically increasing, and hence Alice’s round size never increases.

Proof. This follows immediately from the fact that the only time ma changes is on Line 15 of Alice’s protocol,

when it is incremented by 1.

Lemma 3.3. Algorithm 1 has the following properties:

1. When Bob starts a round, Alice starts a round,

2. mb ≤ ma at all times that Alice remains in the protocol.

Proof. This follows by induction on ma.

Base Case. We first show that the lemma holds while ma = 0. Note that mb can only increase after Bob has

spent a round sending random bits. During such a round, Alice will increment ma before Bob increments

mb. Next, note that while mb = ma = 0, Alice and Bob both have the same round sizes, and so when Bob

starts a round, Alice starts a round.

Inductive Step. Consider the channel step, t, at which Alice increases ma to some value j > 0. We must

show that the lemma statement holds throughout the time while ma = j. By the inductive hypothesis, up

to time t, mb ≤ ma, and when Bob started a round, Alice started a round. There are two cases for the value

of mb at the end of channel step t.

Case 1. mb < j. In this case, Bob must not have received Fa at the beginning of the round he is in at

channel step t. Hence, Bob transmits random bits during this entire round. Bob’s round size is an integer

multiple of Alice’s round size (by Lemma 3.1). Thus, Bob will transmit random bits throughout Alice’s

round begun at channel step t+ 1. So Alice will not receive a matching fingerprint at the end of the round

she began at step t + 1, and so she will increment ma before Bob increments mb. This will happen before

Bob completes the round he is in at time t, so both conditions of the lemma hold while ma = j.

Case 2. mb = j. Note that mb can only increase after Bob has spent a round sending random bits. During

such a round, Alice will increment ma before Bob increments mb. Thus, while ma = j, mb = j. Next, note

that, if mb = ma = j at step t, then Alice and Bob both ended their rounds at step t. Hence, during the

time that ma = j, when Bob starts a round, Alice starts a round.

The following corollaries are immediate from the above lemma.

Corollary 3.4. When Bob ends a round, Alice ends a round.

9

Corollary 3.5. Bob’s rounds are at least as large as Alice’s rounds.

The following corollary holds from the above lemma and the fact that Bob’s round sizes are at least as

large as Alice’s.

Corollary 3.6. While both parties remain in the protocol, whenever Bob is listening for a Fa, Alice is

sending it. Also, whenever Alice is listening for Fb, either Bob is sending it, or Bob is sending random bits.

The following lemma also follows from Lemma 3.3.

Lemma 3.7. Let R be one of Alice’s rounds which starts and ends at the same time as one of Bob’s rounds.

Then, at the end of R, either ma −mb is the same as it was at the beginning of R or it equals 0 or 1.

Proof. If Fa is corrupted at the beginning of R, Bob transmits random bits for the rest of R, and both Alice

and Bob increment their error counts at the end, so ma −mb stays the same.

If Fa is not corrupted at the beginning of R, then Bob sets mb to ma at the beginning of R, so at the

end, ma −mb ≤ 1. By Lemma 3.3 (2), ma −mb ≥ 0.

3.1. Phases

We now give some definitions.

Definition 3.8. We define phase j to be all of Alice’s rounds of size R0/2
j .

Definition 3.9. We define ∆j , for all j > 0, to be the value ma −mb at the end of phase j.

Note that at the beginning of phase j, Alice’s error count is 4j − 1. We now give a few lemmas about

phases.

Lemma 3.10. For any j > 0, phase j contains at least 3∆j−1 of Alice’s rounds,

Proof. Consider any j > 0. At the beginning of phase j, ma = 4j − 1. Also, at the beginning of phase j,

by Lemma 3.3 (2), mb ≤ ma. Hence, 0 ≤ ∆j−1 ≤ 4j − 1. Note that ma increases by at most 1 in each of

Alice’s rounds. Thus, 3∆j−1 rounds after the beginning of phase j, the value of ma is at most:

4j − 1 + 3∆j−1 ≤ 4j − 1 + 3(4j − 1)

< 4j+1 − 1

Thus after 3∆j−1 rounds, ma is not large enough for Alice to advance to phase j + 1.

10

Progressive, Corrupted and Wasted Rounds. Let R be one of Alice’s rounds. We call R progressive if Alice

does not update her error count during the round, or equivalently if her verified transcript length increases.

We call R corrupted if the adversary flipped at least one bit in the round. We call R wasted if it is neither

progressive nor corrupted. We want to bound the number of wasted rounds since this number represents

amount by which ma is potentially an overestimate of T .

We note that wasted rounds occur only when rb > ra. In this case, Bob is not listening when Alice sends

him Fa. As a result, Bob does not send Alice a valid fingerprint at the end of her round, and so her verified

transcript does not increase, even though the adversary has not flipped any bits.

The following lemma bounds the number of wasted rounds in a phase, and gives other critical properties.

Lemma 3.11. Suppose at the beginning of phase j, j > 0, Bob is at the start of a round and his round size

is at most R0/2
j−1. Then

1. There are at most ∆j−1 wasted rounds in phase j;

2. ∆j ∈ {0, 1, 2∆j−1}; and

3. Bob ends a round at the end of phase j.

Proof. If Bob’s round size initially less than R0/2
j−1, then it must equal R0/2

j in order to be a power of

two. Hence Alice and Bob will have rounds that are the same size for the entire phase, and the lemma holds

trivially.

We now consider the harder case where Bob’s round size equals R0/2
j−1.

By Definition 3.8, Alice has round size R0/2
j throughout phase j. By Lemma 3.3 (2), Bob’s round size is

always greater than or equal to Alice’s round size. Thus, as soon as 1) Bob receives Fa in one of his rounds

in phase j, or 2) Bob sets mb equal to Alice’s error count at the beginning of phase j, then Bob’s round size

will be R0/2
j for the remainder of the phase. Finally, by Lemma 3.3 (1), from that point on, Alice and Bob

will begin, and thus end, all rounds at the same time.

Now consider Bob’s rounds in phase j. Assume the adversary corrupts Fa in Bob’s rounds 1 through i

for some value i ≥ 0, and then the adversary does not corrupt Fa in Bob’s round i + 1. We consider two

cases.

Case 1: i < ∆j−1. Each of the first i rounds of Bob spans two rounds of Alice. By Lemma 3.10, these

rounds are all contained in phase j. Consider each pair of Alice’s rounds spanned by one of Bob’s rounds.

The first round in the pair is corrupted, but during the second, Bob is transmitting random bits and Alice

will not receive a fingerprint from him. Thus, this round is wasted. Hence, there are i wasted rounds.

In round i+ 1, Bob synchronizes his round size with Alice since he receives Fa. Thus, there are no more

wasted rounds. Applying Lemma 3.7 for the remaining rounds of the phase, we see that at the end of the

phase, ma −mb = ∆j is either 0 or 1.

11

Case 2: i ≥ ∆j−1. Bob increases mb by 1 in each of his first i rounds. Note that at the beginning of phase

j, Alice’s error count is 4j − 1. Thus, after Bob’s first i rounds, mb = (4j − 1) − ∆j−1 + i. Hence when

i = ∆j−1, mb = (4j − 1). At that time, Bob sets his round size to R0/2
j , and so Alice and Bob will have the

same round sizes, and will hence begin and end all rounds at the same step, for the rest of phase j. Thus,

there are no more wasted rounds. Note that in this case, at Bob’s ∆j−1 round, ma − mb will be 2∆j−1.

Applying Lemma 3.7 for the remaining rounds of the phase, we see that ∆j = 2∆j−1, or ∆j is 0 or 1.

Lemma 3.12. For every j ≥ 0:

1. There are at most 2j−1 wasted rounds in phase j;

2. ∆j ≤ 2j; and

3. Bob ends a round at the end of phase j.

Proof. We prove this by induction on j.

Base Case. At the beginning of phase 0, Bob is at the start of a round and his round size is R0. Thus, by

Lemma 3.11: there are 0 wasted rounds in phase 0; ∆0 ≤ 1; and Bob ends a round at the end of phase 0.

Inductive Step. Consider some j > 0. By the inductive hypothesis, ∆j−1 ≤ 2j−1. At the beginning of phase

j, mb = ma−∆j−1 ≤ (4j − 1)−∆j−1, so that rb = R0/2
blog4 (1+mb)c ≤ R0/2

blog4 (4j−∆j−1)c ≤ R0/2
j−1. The

last line holds since 0 ≤ ∆j−1 ≤ 2j−1.

Also, by the inductive hypothesis, Bob ended a round at the end of phase j−1, and so is starting a round

at the beginning of phase j. Hence, we can apply Lemma 3.11 to phase j. From this lemma, it follows that

1) the number of wasted rounds in phase j is at most 2j−1; 2) ∆j ≤ 2∆j−1 ≤ 2j ; and 3) Bob ends a round

at the end of phase j.

Note from the above lemma that Bob’s rounds are never more than double the size of Alice’s rounds.

The following lemma sums up what we now know about Alice and Bob’s rounds.

Lemma 3.13. The following are always true.

1. Bob’s round size is either equal to Alice’s round size or double Alice’s round size.

2. If Bob’s round size equals Alice’s round size, then when Alice starts a round, Bob starts a round.

3. If Bob’s round size is twice Alice’s round size, then when Alice starts a round, either Bob starts a

round, or Bob is in the middle of a round.

Proof. The lemma follows from Corollary 3.5, Lemma 3.3, and Lemma 3.12.

12

3.2. Correctness and Termination

Lemma 3.14. It is always the case that T ∗a 4 π, where π is the padded transcript.

Proof. This holds by Lemma 3.25 and Lemma 3.26 and the fact that Alice never adds any string to T ∗a that

is not verified by an encoded fingerprint from Bob.

Lemma 3.15. At the beginning and end of each of Alice’s rounds,

T ∗b 4 T ∗a = Ta 4 Tb;

where at most one of the inequalities is strict. Moreover, at the end of a channel step in which Bob receives

Fa correctly,

T ∗b = Tb = T ∗a .

Proof. We prove this by induction on Alice’s round number.

Base Case. At the beginning of the algorithm, all transcripts are null, so T ∗b = T ∗a = Ta = Tb. Moreover if

Bob receives Fa correctly in this round, then T ∗b = Tb = T ∗a .

Inductive Step. We must show that the lemma holds for the j-th round. By the inductive hypothesis, at the

end of the j − 1-th round,

T ∗b 4 T ∗a = Ta 4 Tb,

with at most one of the inequalities being strict. Clearly the statement about the inequalities will thus hold

at the beginning of the j-th round.

Alice’s j-th round starts with Alice sending Bob Fa.

Case 1: Bob does not receive Fa. If Bob does not receive Fa, then either 1) he was listening and it was

corrupted; or 2) he was not listening for it. If he was listening and Fa was corrupted, then Bob transmits

random bits for the remainder of his round, which will be the remainder of Alice’s round by Lemma 3.13.

By the same lemma, if Bob was not listening, then he must be in the middle of a round that is twice as large

as Alice’s. In either case, Bob transmits random bits for the remainder of Alice’s j-th round.

Thus, Alice does not receive a matching fingerprint from Bob at the end of her j-th round. Thus, at the

end of her round, Ta ← T ∗a and Tb and T ∗b are unchanged. Hence, it continues to hold that:

T ∗b 4 T ∗a = Ta 4 Tb;

and at most one of the inequalities is strict.

13

Case 2: Bob receives Fa. If Bob receives Fa, then he learns the length of T ∗a and also Alice’s round size.

By the inductive hypothesis, either T ∗a = T ∗b or T ∗a = Tb. Based on the length of T ∗a , Bob either updates T ∗b
or rewinds Tb, so that T ∗b = Tb = T ∗a . This establishes the second part of the lemma for the j-th round.

Next Alice and Bob continue their rounds which are the same size. If Alice receives a correct fingerprint

from Bob at the end of her round, then the following holds:

T ∗b 4 T ∗a = Ta = Tb.

If Alice does not receive a correct fingerprint from Bob at the end of her round, then the following holds:

T ∗b = T ∗a = Ta 4 Tb.

In either case, the first part of the lemma statement holds at the end of Alice’s j-th round.

Lemma 3.16. Bob leaves after Alice. When Alice leaves, |T ∗b | ≥ L.

Proof. Bob leaves only when he receives an F ′a that is all zeroes or all ones. By Lemma 3.26, F ′a is never

such a string, and the adversary cannot convert Fa to such a string by bit flipping. It follows that Bob

receives such a string only after Alice has left.

Alice leaves only when 1) she has received an encoded fingerprint from Bob; and 2) |T ∗a | ≥ L. If Alice

receives a correctly encoded fingerprint from Bob, then by Lemma 3.26, Bob must have sent one, and hence

Bob must be in a round where he received Fa correctly. By Lemma 3.15, at that channel step, T ∗b = Tb = T ∗a .

Hence at the step when Alice receives the encoded fingerprint from Bob, T ∗b = T ∗a . Thus, when Alice leaves,

|T ∗b | ≥ L.

Lemma 3.17. When either party terminates, their output is correct.

Proof. The proof follows from Lemmas 3.14, 3.15, and 3.16, and the fact that when either party terminates,

they output the first L bits of their verified transcript.

3.3. Cost

Lemma 3.18. After Alice leaves, the adversary must flip at least one bit for each of Bob’s rounds that does

not result in Bob leaving.

Proof. After Alice has left, there is silence on the channel in the steps when Bob is listening for Alice’s

encoded message. This means that if there is no bit flipping by the adversary, the channel transmits the

same bit in every channel step, causing Bob to read a string of all zeroes or all ones, and terminate. Thus,

the adversary must flip at least one bit each time Bob is listening for a codeword.

Lemma 3.19. There are at most 2j − 1 wasted rounds prior to the end of phase j, for all j ≥ 0.

14

Proof. This follows trivially by repeated applications of Lemma 3.12 (1).

Throughout this section, we assume the worst case, that the adversary corrupts at most one bit per

corrupted round.

Lemma 3.20. At all times, ma ≤ T +
√
T . In particular, there are no more than

√
T wasted rounds.

Proof. By way of contradiction, assume ma > T +
√
T at some step, in some phase j, j ≥ 0. Then the

number of wasted rounds at this step must be greater than
√
T . But by Lemma 3.19, the number of wasted

rounds at the end of phase j is no more than 2j − 1. Thus, we have
√
T < 2j − 1, or T < (2j − 1)2.

But ma is no larger than the number of corrupted rounds plus the number of wasted rounds. By

the above paragraph, T < (2j − 1)2 and the number of wasted rounds is no more than 2j − 1. Thus

ma < (2j − 1)2 + (2j − 1). Moreover, we know that in phase j, ma ≥ 4j − 1. Thus, we know

4j − 1 < (2j − 1)2 + (2j − 1).

Simplifying, we get 2j < 1, which is a contradiction for any j ≥ 0.

Let m∗a denote Alice’s error count when she leaves the algorithm, and m∗b denote Bob’s error count when

he himself leaves the algorithm.

Lemma 3.21. Alice terminates in at most L+O(
√
LF (1 +m∗a)) steps.

Proof. We first calculate the cost of the rounds that are not progressive for Alice. The number of non-

progressive rounds that she has executed is m∗a. Her cost for these rounds is at most the following.

m∗a∑
i=1

R0

2blog4 ic
≤ 2R0

m∗a∑
i=1

1

2log4 i

= 2R0

m∗a∑
i=1

1√
i

≤ 2R0

∫ m∗a

0

1√
i

= 4R0

√
m∗a

In every progressive round, except possibly the last, Alice’s block size is at least R02− log4(1+m∗a). Thus

in all but possibly the last progressive round, Alice always adds bits to her verified transcript at a rate of at

least

R02− log4(1+m∗a) − 2F

R02− log4(1+m∗a)
.

15

Thus, the total number of bits Alices sends in all but the last progressive round is no more than

L · R02− log4(1+m∗a)

R02− log4(1+m∗a) − 2F
.

We will make use of the inequality

1

1− δ
≤ 1 + 2δ for 0 < δ ≤ 1/2

and let δ = 2F/R02− log4(1+m∗a). Note that δ ≤ 1/2, since Alice’s round size is always at least 4F .

Then we have that the total number of bits sent by Alice in all but the last progressive round is no more

than

L+
4LF

R02− log4(1+m∗a)
.

Adding in the last progressive round, we get that the total number of bits sent by Alice in progressive

rounds is no more than

L+
4LF

R02− log4(1+m∗a)
+R02− log4(1+m∗a).

Putting this together with the number of bits send in non-progressive rounds, we have that the total

number of bits send by Alice is no more than

L+ 4R0

√
m∗a +

4LF

R02− log4(1+m∗a)
+R02− log4(1+m∗a) ≤ L+ 5R0

√
m∗a + 4

√
LF (2log4(1+m∗a))

≤ L+ 10
√
LFm∗a + 4

√
LF (1 +m∗a)

≤ L+ 14
√
LF (1 +m∗a)

Lemma 3.22. Bob terminates in at most L+ 14
√
LF (1 +m∗a) + 8

√
LFm∗b steps.

Proof. Since Bob never leaves before Alice, Bob’s cost must be at least as much as Alice’s. We now compute

Bob’s additional cost.

At the time of Alice’s departure, ra = R0/2
blog4(1+m∗a)c. By Lemma 3.13, rb ≤ 2R0/2

blog4(1+m∗a)c. Let

m′b denote Bob’s error count when Alice leaves the algorithm. Then 1 + m′b ≥ 4blog4(1+m∗a)c−1. Bob’s final

error count is m∗b . Thus, Bob’s additional cost is at most

16

m∗b−1∑
i=m′b

R0

2blog4(1+i)c ≤ 2R0

m∗b∑
i=1

1

2log4 i

= 2R0

m∗b∑
i=1

1

i2

≤ 4R0

√
m∗b

≤ 8
√
LFm∗b

Combining this with Alice’s cost gives the result.

Lemma 3.23. The algorithm ends in at most 12L time steps.

Proof. By Lemma 3.22, Bob terminates in at most L + 14
√
LF (1 +m∗a) + 8

√
LFm∗b steps. Moreover, m∗a

and m∗b are no more than R2
0/4F

2 − 1. Thus, the algorithm terminates in at most the following number of

steps.

L+ 14
√
LF (1 +m∗a) + 8

√
LFm∗b ≤ L+ 22

√
LFR2

0

4F 2

= L+ 22

√
L2

4

= 12L .

Lemma 3.24. If T ≤ L
8F−1 then both players terminate with the correct output in at most L+O(

√
LF (T + 1))

steps.

Proof. Let Ta denote the number of bits flipped by the adversary while Alice is still in the protocol, and Tb

the bits flipped after Alice has left. Then Ta + Tb = T .

By Lemma 3.20, m∗a ≤ Ta +
√
Ta. By Lemmas 3.3 and 3.18, m∗b ≤ m∗a + Tb. Since Ta + Tb = T it follows

that

m∗a ≤ T +
√
T ≤ 2T ≤ L

4F
− 2 <

R2
0

4F 2
− 1

and similarly

m∗b <
R2

0

4F 2
− 1

Thus, Alice and Bob will both terminate by outputting the bits of π by Lemma 3.17.

Plugging m∗a ≤ 2T and m∗b ≤ 3T into Lemma 3.22 gives the total number of steps required.

Lemma 3.25. With high probability in L, there are no hash collisions.

17

Proof. By Lemma 3.23, the algorithm ends in at most 12L steps. Also, there are at least 4F = Θ(logL)

steps in a round. Thus, the algorithm has at most O(L logL) rounds. Each round has one fingerprint. By

Theorem 2.1 and the setting of our fingerprint sizes, each fingerprint fails with probability at most 1/L2.

Thus, a simple union bound gives the result.

Lemma 3.26. With high probability in L, any bit flipping of a AMD encoded message is detected.

Proof. We noted in the previous lemma that the algorithm terminates in O(L logL) rounds. Each round has

two AMD encoded messages. By Theorem 2.2 and the setting of our encoding sizes, each AMD encoding

fails with probability at most 1/L2. Again, a union bound gives the result.

4. Unbounded T - Algorithm

Algorithm 1 uses fingerprints of a fixed size, F in order to check its transcripts. Each of these has a 1/L2

chance to fail due to a hash collision. Since the algorithm only computes about O(L/ logL) fingerprints,

a union bound tells us that with high probability the algorithm succeeds, below its threshold value of T .

When T is large, many more checks may need to be made, and eventually there will be a good chance that

there is a hash collision. Since the algorithm cannot really recover from a hash collision, we cannot afford

this. On the other hand, we cannot simply start out with larger fingerprints, both because this would be too

expensive if T turned out to be small, and also because even bigger fingerprints are still of a fixed size and

eventually become unreliable. A natural solution is is to allow the fingerprints to grow, adapting the size to

the value of T seen so far, and this is indeed what we will do.

4.1. Helper Functions

As in Algorithm 1, we make black-box use of the Naor and Naor hash family, as well as AMD codes to

protect information. However, in Iteration j we need the failure probabilities for both these primitives to be

1/(2jL2). Thus, we want the fingerprint size to grow with j. We will denote the hash function which has a

collision probability of at most 1/(2jL2) by hj .
4 It is easy to see that O(j) extra bits are required for this,

so that the fingerprint size is O(j + logL).

Algorithm 1 works well when the adversary can only afford to flip a fraction of a bit per block of the

algorithm. In this case, it doesn’t matter that he can corrupt an entire round of the protocol by flipping a

single bit. However, when the adversary has a larger budget, it becomes crucial to force him to pay a larger

price to corrupt a round. To this end, we wrap each fingerprint and protocol bit in a linear error-correcting

code.

4By abuse of notation, we will not subscript all the other helper functions with j; it should be clear from context that the

version of the function used is the one that operates on strings of the correct size and has the correct failure probability

18

To be concrete, we will use a repetition code for each protocol bit, and a Reed-Solomon code [22] to

provide the already AMD-encoded messages with a degree of error correction. This enables us to encode

a message so that it can be recovered even if the adversary corrupts a third of the bits. We will denote

the encoding and decoding functions by ecEnc and ecDec respectively. The following theorem, a slight

restatement from [22], gives the properties of these functions.

Theorem 4.1. [22] There is a constant c > 0 such that for any message m, | ecEnc(m)| ≤ c|m|. Moreover,

if m′ differs from ecEnc(m) in at most one-third of its bits, then ecDec(m′) = m.

Finally, we observe that the linearity of ecEnc and ecDec ensure that when the error correction is composed

with the AMD code, the resulting code has the following properties:

1. If at most a third of the bits of the message are flipped, then the original message can be uniquely

reconstructed by rounding to the nearest codeword in the range of ecEnc.

2. Even if an arbitrary set of bits is flipped, the probability of the change not being recognized is at most

δ, i.e. the same guarantee as the AMD codes.

This is because ecDec is linear, so when noise η is added by the adversary to the codeword x, effectively

what happens is the decoding function ecDec(x + η) = ecDec(x) + ecDec(η) = m + D(η), where m is the

AMD-encoded message. But now ecDec(η) is an obliviously selected string added to the AMD-encoded

codeword.

4.2. Algorithm

Let N1 := d8L/F e be the number of rounds in Iteration 1. Let Nj := 2j−1N1 be the number of rounds in

Iteration j > 1. Let Fj = 2βj +F be the size of the fingerprints in Iteration j, where β is the constant from

the Naor and Naor hash function. Thus the hash collision probability of a single fingerprint is 2−2jL−2. Each

round of the iteration begins with Alice sending Bob a (1/3)-error-corrected, AMD-encoded synchronization

message of length cFj , followed by simulation of the protocol for Fj channel steps, followed by Bob sending

Alice a (1/3)-error-corrected, AMD-encoded fingerprint of length cFj . Here c is the constant factor blowup

we get from the ECC and AMD encodings, but for technical reasons we will further ensure that it is at least

5. Thus, the total round length is (2c+ 1)Fj ≥ 11Fj . We will let α equal (2c+ 1).

As in Algorithm 1, Alice will decide whether to update her verified transcript and advance to the next

block of π or to rewind to redo the current block, based on whether she receives a fingerprint from Bob that

matches the fingerprint of her own transcript. Similarly, Bob will decide whether to join in the simulation

of π or to transmit random bits until the end of the round based on receiving or failing to receive Alice’s

synchronization message at the round’s start. Where the round differs from a round in Algorithm 1, is in

the actual simulation of π. For the whole iteration, a fixed number of bits of π will be simulated per round.

19

Algorithm 2: Interactive Communication: Iteration j

ALICE’S PROTOCOL

Parameters: Nj , Fj , ρj ;

1 for i = 1 to Nj do

2 Fa ← ecEnc(amdEnc(|T ∗a |));

3 Send Fa;

4 if |T ∗a | < L then

5 for the next bFj/ρjc bits of π do

6 if sender then

7 Send next bit ρj times;

8 Append to Ta;

9 else

10 Receive ρj bits;

11 Append majority bit to Ta;

end

12 else

13 Transmit Fj random bits.

14 Receive Bob’s cFj-bit message, F ′b;

15 if IsCodeword(F ′b) then

16 if |T ∗a | ≥ L then

17 Output T ∗a [0 : L] and

Terminate;

18 F ← amdDec(F ′b);

19 if MatchesFP(F , Ta) then

// successful round;

20 T ∗a ← Ta;

21 else

// round failed;

22 Ta ← T ∗a ;

end

BOB’S PROTOCOL

Parameters: Nj , Fj , ρj ;

1 for i = 1 to Nj do

2 if |T ∗b | ≥ L then

3 Wait cFj channel steps;

4 Receive Fj bits;

5 if fewer than Fj/3 alternations in the

received string then

6 Output T ∗b [0 : L] and

Terminate;

7 else

8 Fb ← ecEnc(amdEnc(hj(T ∗b)));

9 Send Fb;

10 else

11 Receive Alice’s cFj-bit message F ′a;

12 if IsCodeword(ecDec(F ′a)) then

13 `← amdDec(ecDec(F ′a));

14 if ` > |T ∗b | then

15 T ∗b ← Tb;

16 else

17 Tb ← T ∗b ;

18 for the next bFj/ρjc bits of π do

19 if sender then

20 Send next bit ρj times;

21 Append to Tb;

22 else

23 Receive ρj bits;

24 Append majority bit to Tb;

end

25 Fb ← ecEnc(amdEnc(hj(Tb)));

26 Send Fb;

27 else

28 Transmit (c+ 1)Fj random bits.

end

20

Algorithm 3: Interactive Communication

ALICE’S PROTOCOL

// Iteration 0;

1 Run Alice’s protocol from Alg 1 ;

2 if not terminated then

3 transmit random bits until channel step

12L;

// End of Iteration 0;

4 j ← 1;

5 while still present do

// Iteration j;

6 Fj ← β(j + logL);

7 ρj ← 2jdFj

F e ∧ Fj ;

8 Nj ← 2j−1d8L/F e;

9 Run Alice’s protocol from Algorithm 2,

with parameters Nj , Fj , ρj ;

// End of Iteration j;

10 j ← j + 1;

end

BOB’S PROTOCOL

// Iteration 0;

1 Run Bob’s protocol from Alg 1 ;

2 if not terminated then

3 transmit random bits until channel step

12L;

// End of Iteration 0;

4 j ← 1;

5 while still present do

// Iteration j;

6 Fj ← β(j + logL);

7 ρj ← 2jdFj

F e ∧ Fj ;

8 Nj ← 2j−1d8L/F e;

9 Run Bob’s protocol from Algorithm 2, with

parameters Nj , Fj , ρj ;

// End of Iteration j;

10 j ← j + 1;

end

21

Each bit will be repeated ρj = 2j−1dFj/F e ∧ Fj times. 5 The receiving party will use majority filtering to

infer the transmitted bit. Since Fj time steps in the round are allocated to protocol simulation, this allows

bFj/ρjc bits of π to be simulated.

Notice that the number of rounds doubles from one iteration to the next. Also, the number of repetitions

of each simulated bit also roughly doubles between iterations, at least until it hits its cap, which is a constant

fraction of the length of the round. This is the so-called doubling trick, (though in our case perhaps it should

be quadrupling) which results in the overall cost being dominated by the cost in the last (or second to last)

iteration.

5. Unbounded T - Analysis

We now analyze the main algorithm presented in Section 4. As in Section 3, we begin by noting that a

hash collision or an AMD code failure will cause the algorithm to fail. Additionally, the algorithm could fail

during the padding rounds, if the adversary happens to flip bits in such a way as to cause Alice’s random

bits to look like silence, resulting in Bob’s premature departure.

In Section 5.3 we will show that with high probability each of these events does not occur. Meanwhile,

throughout this section we will assume without further mention that we are in the good event where none

of the undesirable events occur.

5.1. Alice and Bob are both present

Lemma 5.1. For every j ≥ 1, Alice and Bob are always synchronized. That is, they begin the iteration as

well as every round therein at the same time.

Proof. Alice and Bob synchronize themselves after Iteration 0 by both starting Iteration 1 at channel step

12L + 1. Thereafter, for each j ≥ 1, they have the same round sizes αFj and number of rounds Nj in

Iteration j, so that they remain synchronized.

We will call a round corrupted if enough bits are flipped in the round that the bits of π being simulated

cannot be recovered or verified by Alice. We will call it uncorrupted or progressive if it is not corrupted in

the above sense.

Lemma 5.2. Each round is either corrupted at a cost of at least ρj/2 to the adversary or results in bFj/ρjc

bits of progress in π.

Proof. Since each simulated protocol bit is sent ρj times, with majority filtering at the receiving end, it costs

the adversary ρj/2 to corrupt the repetition-encoded bit. It costs the adversary at least cFj/3 ≥ ρj/2 to

5We remind the reader that x ∧ y denotes the minimum of x and y, while x ∨ y denotes their maximum.

22

corrupt Alice’s synchronization message or Bob’s fingerprint since these are protected by error-correction.

Thus it costs the adversary at least ρj/2 to corrupt the round. Otherwise, since there are Fj steps allocated

to sending protocol bits, and each one is repeated ρj times, the protocol is successfully simulated for bFj

ρj
c

bits.

The following lemma is the equivalent of Lemmas 3.14 to 3.17 for Iteration j. Its proof is nearly identical

to the proofs in Section 3.2 (indeed, it is simpler, since Iteration j does not have the synchronization problems

faced by Algorithm 1) and we omit it.

Lemma 5.3. Iteration j has the following properties:

1. It is always the case that T ∗a 4 π, where π is the padded transcript.

2. At the beginning and end of each round,

T ∗b 4 T ∗a = Ta 4 Tb;

where at most one of the inequalities is strict. Moreover, at the end of a channel step in which Bob

receives Fa correctly,

T ∗b = Tb = T ∗a .

3. Bob leaves after Alice. When Alice leaves, |T ∗b | ≥ L.

4. When either party terminates, their output is correct.

Lemma 5.4. There are at most Nj/4 uncorrupted rounds in Iteration j

Proof. Since each uncorrupted round results in bFj/ρjc bits of progress in π, dLρj/Fje rounds are sufficient

for Alice’s transcript length to exceed L. One additional uncorrupted round is sufficient for Bob to catch up

to Alice if necessary, using her synchronization message, and for Alice to infer from Bob’s fingerprint that

Bob’s transcript length has exceeded L, resulting in Alice’s departure. After that, if a round is uncorrupted,

then Bob will perceive silence on the channel, resulting in Bob’s departure. Thus dLρj/Fje+ 2 uncorrupted

rounds are enough for both parties to terminate. Finally note that for all j ≥ 1,

ρj
Fj
≤ 2j−1

F
∧ 1 ≤ 2j−1

F

It follows that (for sufficiently large L) there are at most 2jL/F = Nj/4 uncorrupted rounds in Iteration

j.

The following corollary is immediate.

Corollary 5.5. If j is not the last iteration, then at least 3/4 of the rounds are corrupted.

23

Although the adversary can flip any number of bits in a round, we will only charge him the minimum

number of bit-flips required for the outcome we see in the round, i.e., we will charge him 0 for uncorrupted

rounds and ρj/2 for corrupted rounds. Let Tj denote the number of corruptions charged to the adversary in

Iteration j. Clearly, for j > 0

Tj ≤
1

2
Njρj (1)

Also, we know from Section 2 that if the algorithm does not end in Iteration 0, then T0 ≥ L/8F . In this

case, we will generously only charge the adversary that amount. In other words, if Iteration 1 is reached,

either by both Alice and Bob, or by Bob alone, T0 = dL/8F e.

Lemma 5.6. If j is not the last iteration then Tj ≥ 3
8Njρj

Proof. This follows from Corollary 5.5, since it costs the adversary at least ρj/2 to corrupt a round.

Lemma 5.7. If j is not the last iteration then

3Tj−1/2 ≤ Tj ≤ 64Tj−1

Proof. If j = 1

T1 ≥
3

8
N1ρ1 ≥

3L

F
≥ 24T0 > 3T0

and

T1 ≤ N1ρ1/2 ≤
8L

F
= 64T0 .

If j > 1, then by (1) and Lemma 5.6,

3

2

3Njρj/8

Nj−1ρj−1/2
≤ Tj
Tj−1

≤ Njρj/2

3Nj−1ρj−1/8
≤ 64

since Nj−1 = Nj/2 and ρj−1 ≤ ρj ≤ 4ρj−1.

Lemma 5.8. The cost to either player due to uncorrupted rounds in Iteration j ≤ logF is at most

7α
√
LTj−1F

Proof. Each uncorrupted round costs the players αFj . Since there are at most Nj/4 uncorrupted rounds,

the resulting cost is no more than α
4NjFj . Since j ≤ logF , ρj = 2j−1dFj/F e and Fj ≤ 2F . Combining

these we have

Fj ≤ F
√

22−jρj

24

so that

α

4
NjFj ≤ αNj−1Fj−1

≤ αNj−1F
√

23−jρj−1

≤ αF
√
Nj−123−j

√
Nj−1ρj−1

≤ αF
√

2N1

√
8Tj/3

≤ α
√

128LTjF/3

≤ 7α
√
LTjF .

Lemma 5.9. If j > logF , the cost to either player due to uncorrupted rounds in Iteration j is at most

3αTj−1

Proof. When j > logF , Fj = ρj and by Lemma 5.6,

α

4
NjFj =

α

4
Njρj ≤ αNj−1ρj−1 ≤

8α

3
Tj−1 ≤ 3αTj−1 .

Lemma 5.10. The cost to the players from corrupted rounds in Iteration j is at most 4α
√

2LTjF if j ≤ logF

and 2αTj otherwise.

Proof. Suppose there are k corrupted rounds. Then the cost to the players is kαFj , while the adversary’s

cost is kρj/2. If j ≥ logF + 1, Fj = ρj and we easily see that the players’ cost is at most 2αT . When

j ≤ logF , since k ≤ Nj ,

kαFj = α
√
kρjF21−j

√
NjFj

≤ α
√
TjF22−j

√
2jN1F

≤ 2α
√

8LTjF .

Collecting the various costs and noting that Tj ≤ 64Tj−1, we see that for a suitably large constant γ, we

have

Lemma 5.11. The total cost to the players from Iteration j is at most γ
√
LTj−1 logL if j ≤ logF and

γTj−1 otherwise.

5.2. Bob plays alone

After Alice’s verified transcript has length at least L, in each subsequent round, she transmits her

synchronization message, and then random bits to indicate her continued presence. Once Alice has left,

there is silence on the channel. To corrupt this silence, the adversary must make it look like a corrupted

25

synchronization message followed by random bits. Since a random string of length Fj has, on average, Fj/2

alternations of bits, Bob considers the string to represent silence if it has fewer than Fj/3 alternations. Thus,

to corrupt such a round the adversary must pay at least Fj/3.

Alice leaves when she has received word that Bob has a verified transcript of length at least L, and a

single extra uncorrupted round thereafter will cause Bob to leave as well. Thus, if iteration j was not Bob’s

last one, the adversary must have corrupted every round. If 1 ≤ k < Nj rounds are corrupted, Bob pays at

most (k + 1)αFj ≤ 2kαFj and the adversary pays kFj/3. If k = 0, we will generously account for the lone

uncorrupted round from Iteration j in Iteration j − 1 by noting that α(Nj−1Fj−1 + Fj) ≤ 2α(Nj−1Fj−1)

Finally a calculation identical to that in Lemma 5.10 shows that Bob’s cost for an iteration j that he played

alone is no more than

γ
√
LTj−1 logL

if j < logF and

γTj−1

otherwise.

5.3. Failure Probabilities

In this section we bound the probabilities of the events that cause the algorithm to fail.

Lemma 5.12. With high probability in L, there is no hash collision during Iteration j.

Proof. The fingerprint size has been selected large enough that the probability of a hash collision for a single

hash is 1
22jL2 . Since there are Nj = 2j+2L/F rounds in Iteration j, by a union bound, the probability of a

hash collision during the iteration is O
(

1
2jL logL

)
.

Lemma 5.13. With high probability in L, any bit flipping of an AMD encoded message during Iteration j

is detected.

Proof. The size of the AMD encoding has been selected so that the probability of a failure to detect a single

instance of tampering is 1
22jL2 . Since there are two AMD encodings per round and 2j+2L/F rounds, again

the probability that such a failure occurs during the iteration is O
(

1
2jL logL

)
.

Lemma 5.14. With high probability in L, Alice leaves before Bob.

Proof. Bob does not terminate until he thinks Alice has left, and he does not even start checking for whether

she seems to have left until after his transcript has length at least L. Since Bob’s transcript lags behind

that of Alice, this means that by the time Bob is checking for whether Alice has left, Alice either really has

left, in which case it is fine for Bob to leave, or she is transmitting i.i.d. random bits in batches of length

Fj , between fingerprints. Since the adversary cannot see the bits, any bit flips on his part do not alter the

26

fact that the string received by Bob is a uniformly random bit string of length Fj . Such a string has Fj/2

alternations (consecutive bits that differ) in expectation. Bob leaves if he sees fewer than Fj/3 alternations.

If the string is random, the likelihood of Bob seeing fewer than Fj/3 alternations is, by Chernoff’s bound, at

most e−Fj/18 ≤ 1
22jL2 provided β =

Fj

2j+logL was chosen suitably large. Since there are at most Nj chances

in Iteration j for the adversary to try this attack, a union bound again shows that Bob leaves after Alice,

except with probability O
(

1
2jL logL

)
.

5.4. Putting everything together

We will now prove our main theorem by putting all these costs together and calculating the total cost to

either player and the failure probability of the algorithm. As before, T denotes the number of bits flipped

by the adversary.

Theorem 5.15. The algorithm succeeds with probability at least 1 − 1/L logL. If it succeeds, then each

player’s cost is at most

L+O(
√
LT logL+ T)

Proof. First we note that for each j ≥ 0 (Iteration 0 being Algorithm 1), the probability that Algorithm 3

fails during iteration j is at most O
(

1
22jL logL

)
. Thus the overall probability that it fails at all is

O

 ∞∑
j=0

1

2jL logL

 = O

(
1

L logL

)

Thus, with high probability the algorithm succeeds.

Let J denote the last iteration in which the player participates. If J = 0 then Lemma 3.24 already proves

that the players’ total cost is at most L + O(
√
L(T + 1) logL). Suppose J ≥ 1. For each j, let Cost(j)

denote the player’s cost from Iteration j. We know that

• Cost(0) = 12L ≤ L+ γ
√
LT0 logL where T0 = L/(8F)

• Cost(j) ≤ γ
√
LTj−1 logL if 1 ≤ j ≤ logF

• Cost(j) ≤ γTj−1 if j > logF

27

When J ≤ logF , the player’s total cost is

J∑
j=0

Cost(j) ≤ Cost(0) +

J∑
j=1

Cost(j)

≤ L+ γ
√
LT0 logL+

J∑
j=1

γ
√
LTj−1 logL

≤ L+ γ
√
L logL

√(2/3)J−1TJ−1 +

J∑
j=1

√
(2/3)J−1−jTJ−1


≤ L+ γ

√
LTJ−1 logL

√(2/3)J−1 +

J−2∑
j=0

√
(2/3)j


≤ L+

√
3γ√

3−
√

2

√
LTJ−1 logL

= L+ γ′
√
LTJ−1 logL

≤ L+ γ′
√
LT logL

On the other hand, TblogFc = Θ(NblogFcρblogFc) = Θ(L logL), so that
√
LTblogFc logL = Θ(TblogFc) and

for J > logF we have

J∑
j=0

Cost(j) ≤ Cost(0) +

blogFc∑
j=1

Cost(j) +

J∑
j=blogFc+1

Cost(j)

≤ L+ γ′
√
LTblogFc logL+

J∑
j=blogFc+1

γTj−1

≤ L+ γ′′TblogFc +

J∑
j=blogFc+1

γTj−1

≤ L+O(T)

Thus the players’ cost is always L+O
(√

L(T + 1) logL+ T
)

.

6. Some Additional Remarks

Need for Private Channels

The following theorem justifies our assumption of private channels.

Theorem 6.1. Consider any algorithm for interactive communication over a public channel that works with

unknown T and always terminates in the noise-free case. Any such algorithm succeeds with probability at

most 1/2.

28

Proof. The adversary chooses some protocol π with transcript length L and some separate “corrupted”

protocol πc such that 1) πC has transcript length L and 2) Bob’s individual input for πc is equivalent to his

individual input for π. The goal of the adversary will be to convince Bob that πc is the protocol, rather than

π. Note that we can always choose some appropriate pair π and πc meeting the above criteria.

Assume that if πc is the protocol and there is no noise on the channel, then Bob will output πc with

probability at least 1/2; if not, then the theorem is trivially true. Then, the adversary sets π to be the input

protocol. Next, the adversary simulates Alice in the case where her input protocol is πc, and sets the bits

received by Bob to be the bits that would be sent by Alice in such a case.

Since the the algorithm eventually terminates, Bob will halt after some finite number of rounds, X. Using

the above strategy, Bob will incorrectly output πc with probability at least 1/2 and the value of T will be

no more than X.

Note that in the above, we critically rely on the fact that T is unknown to Bob.

Communication Rate Comparison.

In Haeupler’s algorithm [2], the noise rate ε is known in advance and is used to design an algorithm with

a communication rate of 1−O(
√
ε log log 1/ε). Let L′ be the length of π′. Then in his algorithm, L′ = O(L),

and so the adversary is restricted to flipping εL′ = O(L) bits. Thus, in his model, T and L′ are always O(L).

In our model, the values of T and L′ are not known in advance, and so both T and L′ may be asymptotically

larger than L.

How do our results compare with [2]? As noted above, a direct comparison is only possible when

T = O(L). Restating our algorithm in terms of ε, we have the following theorem.

Theorem 6.2. If the adversary flips O(L) bits and the noise rate is ε then our algorithm guarantees a

communication rate of 1−O
(√

logL
L +

√
ε logL

)
.

Proof. When T < L we also have T <
√
L(T + 1) logL and our algorithm guarantees that for some γ > 0,

L′ = L+ γ
√
L(T + 1) logL

Let ε = T/L′ and R = L/L′ be the effective noise and communication rates respectively. Then,

R =
L

L′
= 1− L′ − L

L′

≥ 1−
γ
√
L(T + 1) logL

L′

≥ 1− γ
√
L logL+

√
LT logL

L′

≥ 1− γ
(√

R logL√
L′

+
√
Rε logL

)
≥ 1− γ

√
logL

(
1√
L

+
√
ε

)
,

29

where the last line follows because 1/
√
L′ ≤ 1/

√
L and R ≤ 1.

We note that the additive term
√

logL
L arises from the fact that because we do not know the error rate

ahead of time, we cannot get a communication rate of 1 even when the effective error rate turns out to be

zero.

A Note on Fingerprint Size.

A natural question is whether more powerful probabilistic techniques than union bound could enable us

to use smaller fingerprints as done in [2]. The variability of block sizes poses a challenge to this approach

since Alice and Bob must either agree on the current block size, or be able to recover from a disagreement

by having Bob stay in the listening loop so he can receive Alice’s message. If their transcripts diverge

by more than a constant number of blocks, it may be difficult to make such a recovery, and therefore it

seems challenging to modify our algorithm to use smaller fingerprints. However, it is a direction for further

investigation.

A Lower Bound

In this section, we prove a lower bound that demonstrates the near optimality of our upper bound by

assuming the following conjecture by Haeupler holds [2]. We now restate Haeupler’s conjecture.

Conjecture 1. (Haeupler [2], 2014) The maximal rate achievable by an interactive coding scheme for any

binary error channel with random or oblivious errors is 1 − Θ(
√
ε) for a noise rate ε → 0. This also holds

for for fully adversarial binary error channels if the adversary is computationally bounded or if parties have

access to shared randomness that is unknown to the channel.

For the remainder of this section, we assume that Haeupler’s conjecture holds for any algorithm that

succeed with high probability in L with an expected cost of at most L′ under adversarial noise. For ease

of exposition, we omit such statements in all of our claims below. By robust interactive communication, we

mean interactive communication tolerates T errors.

We begin by showing the near optimality with respect to the communication rate achieved:

Theorem 6.3. Any algorithm for robust interactive communication must have L′ = L+ Ω
(
T +
√
LT
)

for

some T ≥ 1.

Proof. Let T ≥ 1 be any value such that T/L′ = o(1). Then, Haeupler’s Conjecture applies and the expected

total number of bits sent is L′ ≥ L/(1−d
√
ε) for some constant d > 0. Noting that 1/(1−d

√
ε) ≥ 1+d

√
ε by

the well-known sum of a geometric series, this implies that L′ ≥ L/(1−d
√
ε) ≥ (1+d

√
ε)L = (1+d

√
T/L′)L

since ε = T/L′.

This implies that L/L′ ≤ 1/(1 + d
√
T/L′). Now observe that 1/(1 + x) = 1/(1 − (−x)) ≤ 1 − x + x2

for |x| < 1, again by the sum of a geometric series. Plugging in d
√
T/L′ for x, we have 1/(1 + d

√
T/L′) ≤

30

1−d
√
T/L′+d2(T/L′). Therefore, L/L′ ≤ 1−d

√
T/L′+d2(T/L′) = 1−d

√
T/L′(1−d

√
T/L′) ≤ 1−d′

√
T/L′

for some d′ > 0 depending only on d.

We then derive: L ≤ L′(1− d′
√
T/L′) = L′ − d′

√
L′T . It follows that L′ ≥ L+ d′

√
L′T = L+ Ω(

√
LT)

since L′ ≥ L.

Finally, we show that
√
LT = Θ(T +

√
LT). Assume that given any algorithm A for interactive com-

putation, we create a new algorithm A’ that has expected value of L′ = O(L). To do this, A’ checks based

on ε and L whether or not Haeupler’s algorithm [2] will send fewer bits in expectation than A. If so it

runs Haeupler’s algorithm. Note that the expected number of bits sent by A’ is no more than the expected

number of bits sent by A.

Note that T = εL′ and for algorithm A’, the expected value of L′ = O(L). This implies that implies that

T = εO(L) or T = O(L). Since T < L, it holds that
√
LT = Θ(T +

√
LT) which completes the proof.

7. Conclusion

We have described the first algorithm for interactive communication that tolerates an unknown but finite

amount of noise. Against an adversary that flips T bits, our algorithm sends L+O
(√

L(T + 1) logL+ T
)

bits in expectation where L is the transcript length of the computation. We prove this is optimal up to

logarithmic factors, assuming a conjectured lower bound by Haeupler. Our algorithm critically relies on the

assumption of a private channel, an assumption that we show is necessary in order to tolerate an unknown

noise rate.

Several open problems remain including the following. First, can we adapt our results to interactive

communication that involves more than two parties? Second, can we more efficiently handle an unknown

amount of stochastic noise? Finally, for any algorithm, what are the optimal tradeoffs between the overhead

incurred when T = 0 and the overhead incurred for T > 0?

Acknowledgments

We are grateful to Nico Döttling, Bernhard Haeupler, Mahdi Zamani, and the anonymous reviewers for

their useful discussions and comments.

References

[1] V. Dani, T. Hayes, M. Mohavedi, J. Saia, M. Young, Interactive Communication with Unknown Noise

Rate, in: Proceedings of the 36th International Colloquium on Automata, Languages and Programming

(ICALP), 2015, pp. 575–587.

[2] B. Haeupler, Interactive channel capacity revisited, in: Foundations of Computer Science (FOCS),

IEEE, 2014, pp. 226–235.

31

[3] L. Schulman, Communication on Noisy Channels: A Coding Theorem for Computation, in: Foundations

of Computer Science (FOCS), 1992, pp. 724–733.

[4] Z. Brakerski, M. Naor, Fast Algorithms for Interactive Coding, in: Symposium on Discrete Algorithms

(SODA), 2013, pp. 443–456.

[5] Z. Brakerski, Y. T. Kalai, Efficient Interactive Coding against Adversarial Noise, in: Foundations of

Computer Science (FOCS), 2012, pp. 160–166.

[6] M. Braverman, A. Rao, Towards Coding for Maximum Errors in Interactive Communication, in: Sym-

posium on Theory of Computing (STOC), 2011, pp. 159–166.

[7] M. Braverman, Towards Deterministic Tree Code Constructions, in: Innovations in Theoretical Com-

puter Science Conference (ITCS), 2012, pp. 161–167.

[8] R. Gelles, A. Moitra, A. Sahai, Efficient and Explicit Coding for Interactive Communication, in: Foun-

dations of Computer Science (FOCS), 2011, pp. 768–777.

[9] M. Ghaffari, B. Haeupler, M. Sudan, Optimal Error Rates for Interactive Coding I: Adaptivity and

Other Settings, in: Symposium on Theory of Computing (STOC), 2014, pp. 794–803.

[10] M. Ghaffari, B. Haeupler, Optimal Error Rates for Interactive Coding II: Efficiency and List Decoding,

available at: http://arxiv.org/abs/1312.1763 (2013).

[11] C. E. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal 27 (3) (1948)

379–423.

[12] L. J. Schulman, Deterministic Coding for Interactive Communication, in: Symposium on Theory of

Computing (STOC), 1993, pp. 747–756.

[13] M. Braverman, Coding for Interactive Computation: Progress and Challenges, in: Communication,

Control, and Computing (Allerton), 2012, pp. 1914–1921.

[14] M. Peczarski, An Improvement of the Tree Code Construction, Information Processing Letters 99 (3)

(2006) 92–95.

[15] C. Moore, L. J. Schulman, Tree Codes and a Conjecture on Exponential Sums, in: Innovations in

Theoretical Computer Science (ITCS), 2014, pp. 145–154.

[16] R. Ostrovsky, Y. Rabani, L. J. Schulman, Error-Correcting Codes for Automatic Control, IEEE Trans-

actions on Information Theory 55 (7) (2009) 2931–2941.

32

[17] M. Franklin, R. Gelles, R. Ostrovsky, L. Schulman, Optimal Coding for Streaming Authentication and

Interactive Communication, IEEE Transactions on Information Theory 61 (1) (2015) 133–145.

[18] M. Braverman, K. Efremenko, List and Unique Coding for Interactive Communication in the Presence

of Adversarial Noise, in: Foundations of Computer Science (FOCS), 2014, pp. 236–245.

[19] O. Feinerman, B. Haeupler, A. Korman, Breathe before speaking: efficient information dissemination

despite noisy, limited and anonymous communication, in: Principles of Distributed Computing (PODC),

ACM, 2014, pp. 114–123.

[20] J. Naor, M. Naor, Small-bias probability spaces: Efficient constructions and applications, SIAM Journal

on Computing (SICOMP) 22 (4) (1993) 838–856.

[21] R. Cramer, Y. Dodis, S. Fehr, C. Padró, D. Wichs, Detection of algebraic manipulation with applications

to robust secret sharing and fuzzy extractors, in: Advances in Cryptology–EUROCRYPT 2008, Springer,

2008, pp. 471–488.

[22] I. S. Reed, G. Solomon, Polynomial codes over certain finite fields, Journal of the Society for Industrial

and Applied Mathematics 8 (2) (1960) 300–304. arXiv:http://dx.doi.org/10.1137/0108018, doi:

10.1137/0108018.

URL http://dx.doi.org/10.1137/0108018

33

http://dx.doi.org/10.1137/0108018
http://arxiv.org/abs/http://dx.doi.org/10.1137/0108018
http://dx.doi.org/10.1137/0108018
http://dx.doi.org/10.1137/0108018
http://dx.doi.org/10.1137/0108018

	Introduction
	Related Work
	Formal Model
	Overview of Our Result
	Paper Organization

	Bounded T - Algorithm
	Overview, Notation and Definitions
	Helper Functions
	Remaining Notation
	Algorithm Overview

	Bounded T - Analysis
	Phases
	Correctness and Termination
	Cost

	Unbounded T - Algorithm
	Helper Functions
	Algorithm

	Unbounded T - Analysis
	Alice and Bob are both present
	Bob plays alone
	Failure Probabilities
	Putting everything together

	Some Additional Remarks
	Conclusion

